Advertisement for orthosearch.org.uk
Results 1 - 15 of 15
Results per page:
Bone & Joint Open
Vol. 3, Issue 12 | Pages 991 - 997
23 Dec 2022
McPherson EJ Stavrakis AI Chowdhry M Curtin NL Dipane MV Crawford BM

Aims

Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects.

Methods

We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures.


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1499 - 1454
1 Nov 2018
Green CM Buckley SC Hamer AJ Kerry RM Harrison TP

Aims

The management of acetabular defects at the time of revision hip arthroplasty surgery is a challenge. This study presents the results of a long-term follow-up study of the use of irradiated allograft bone in acetabular reconstruction.

Patients and Methods

Between 1990 and 2000, 123 hips in 110 patients underwent acetabular reconstruction for aseptic loosening, using impaction bone grafting with frozen, irradiated, and morsellized femoral heads and a cemented acetabular component. A total of 55 men and 55 women with a mean age of 64.3 years (26 to 97) at the time of revision surgery are included in this study.


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1442 - 1448
1 Nov 2018
Hipfl C Janz V Löchel J Perka C Wassilew GI

Aims

Severe acetabular bone loss and pelvic discontinuity (PD) present particular challenges in revision total hip arthroplasty. To deal with such complex situations, cup-cage reconstruction has emerged as an option for treating this situation. We aimed to examine our success in using this technique for these anatomical problems.

Patients and Methods

We undertook a retrospective, single-centre series of 35 hips in 34 patients (seven male, 27 female) treated with a cup-cage construct using a trabecular metal shell in conjunction with a titanium cage, for severe acetabular bone loss between 2011 and 2015. The mean age at the time of surgery was 70 years (42 to 85) and all patients had an acetabular defect graded as Paprosky Type 2C through to 3B, with 24 hips (69%) having PD. The mean follow-up was 47 months (25 to 84).


The Bone & Joint Journal
Vol. 99-B, Issue 1_Supple_A | Pages 25 - 30
1 Jan 2017
Waddell BS Della Valle AG

This review summarises the technique of impaction grafting with mesh augmentation for the treatment of uncontained acetabular defects in revision hip arthroplasty.

The ideal acetabular revision should restore bone stock, use a small socket in the near-anatomic position, and provide durable fixation. Impaction bone grafting, which has been in use for over 40 years, offers the ability to achieve these goals in uncontained defects. The precepts of modern, revision impaction grafting are that the segmental or cavitary defects must be supported with a mesh; the contained cavity is filled with vigorously impacted morselised fresh-frozen allograft; and finally, acrylic cement is used to stabilise the graft and provide rigid, long-lasting fixation of the revised acetabular component.

Favourable results have been published with this technique. While having its limitations, it is a viable option to address large acetabular defects in revision arthroplasty.

Cite this article: Bone Joint J 2017;99-B(1 Supple A):25–30.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 64 - 67
1 Jan 2016
Lachiewicz PF Watters TS

The ‘jumbo’ acetabular component is now commonly used in acetabular revision surgery where there is extensive bone loss. It offers high surface contact, permits weight bearing over a large area of the pelvis, the need for bone grafting is reduced and it is usually possible to restore centre of rotation of the hip. Disadvantages of its use include a technique in which bone structure may not be restored, a risk of excessive posterior bone loss during reaming, an obligation to employ screw fixation, limited bone ingrowth with late failure and high hip centre, leading to increased risk of dislocation. Contraindications include unaddressed pelvic dissociation, inability to implant the component with a rim fit, and an inability to achieve screw fixation. Use in acetabulae with < 50% bone stock has also been questioned. Published results have been encouraging in the first decade, with late failures predominantly because of polyethylene wear and aseptic loosening. Dislocation is the most common complication of jumbo acetabular revisions, with an incidence of approximately 10%, and often mandates revision. Based on published results, a hemispherical component with an enhanced porous coating, highly cross-linked polyethylene, and a large femoral head appears to represent the optimum tribology for jumbo acetabular revisions.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):64–7.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 73 - 77
1 Jan 2016
Mäkinen TJ Fichman SG Watts E Kuzyk PRT Safir OA Gross AE

An uncemented hemispherical acetabular component is the mainstay of acetabular revision and gives excellent long-term results.

Occasionally, the degree of acetabular bone loss means that a hemispherical component will be unstable when sited in the correct anatomical location or there is minimal bleeding host bone left for biological fixation. On these occasions an alternative method of reconstruction has to be used.

A major column structural allograft has been shown to restore the deficient bone stock to some degree, but it needs to be off-loaded with a reconstruction cage to prevent collapse of the graft. The use of porous metal augments is a promising method of overcoming some of the problems associated with structural allograft. If the defect is large, the augment needs to be protected by a cage to allow ingrowth to occur. Cup-cage reconstruction is an effective method of treating chronic pelvic discontinuity and large contained or uncontained bone defects.

This paper presents the indications, surgical techniques and outcomes of various methods which use acetabular reconstruction cages for revision total hip arthroplasty.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):73–7.


The Bone & Joint Journal
Vol. 96-B, Issue 8 | Pages 1047 - 1051
1 Aug 2014
Lee PTH Lakstein DL Lozano B Safir O Backstein J Gross AE

Revision total hip replacement (THR) for young patients is challenging because of technical complexity and the potential need for subsequent further revisions. We have assessed the survivorship, functional outcome and complications of this procedure in patients aged <  50 years through a large longitudinal series with consistent treatment algorithms. Of 132 consecutive patients (181 hips) who underwent revision THR, 102 patients (151 hips) with a mean age of 43 years (22 to 50) were reviewed at a mean follow-up of 11 years (2 to 26) post-operatively. We attempted to restore bone stock with allograft where indicated. Using further revision for any reason as an end point, the survival of the acetabular component was 71% (sd 4) and 54% (sd 7) at ten- and 20 years. The survival of the femoral component was 80% (sd 4) and 62% (sd 6) at ten- and 20 years. Complications included 11 dislocations (6.1%), ten periprosthetic fractures (5.5%), two deep infections (1.1%), four sciatic nerve palsies (2.2%; three resolved without intervention, one improved after exploration and freeing from adhesions) and one vascular injury (0.6%). The mean modified Harris Hip Score was 41 (10 to 82) pre-operatively, 77 (39 to 93) one year post-operatively and 77 (38 to 93) at the latest review.

This overall perspective on the mid- to long-term results is valuable when advising young patients on the prospects of revision surgery at the time of primary replacement.

Cite this article: Bone Joint J 2014;96-B:1047–51.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 319 - 324
1 Mar 2014
Abolghasemian M Sadeghi Naini M Tangsataporn S Lee P Backstein D Safir O Kuzyk P Gross AE

We retrospectively reviewed 44 consecutive patients (50 hips) who underwent acetabular re-revision after a failed previous revision that had been performed using structural or morcellised allograft bone, with a cage or ring for uncontained defects. Of the 50 previous revisions, 41 cages and nine rings were used with allografts for 14 minor-column and 36 major-column defects. We routinely assessed the size of the acetabular bone defect at the time of revision and re-revision surgery. This allowed us to assess whether host bone stock was restored. We also assessed the outcome of re-revision surgery in these circumstances by means of radiological characteristics, rates of failure and modes of failure. We subsequently investigated the factors that may affect the potential for the restoration of bone stock and the durability of the re-revision reconstruction using multivariate analysis. At the time of re-revision, there were ten host acetabula with no significant defects, 14 with contained defects, nine with minor-column, seven with major-column defects and ten with pelvic discontinuity. When bone defects at re-revision were compared with those at the previous revision, there was restoration of bone stock in 31 hips, deterioration of bone stock in nine and remained unchanged in ten. This was a significant improvement (p <  0.001). Morselised allografting at the index revision was not associated with the restoration of bone stock. . In 17 hips (34%), re-revision was possible using a simple acetabular component without allograft, augments, rings or cages. There were 47 patients with a mean follow-up of 70 months (6 to 146) available for survival analysis. Within this group, the successful cases had a minimum follow-up of two years after re-revision. There were 22 clinical or radiological failures (46.7%), 18 of which were due to aseptic loosening. The five and ten year Kaplan–Meier survival rate was 75% (95% CI, 60 to 86) and 56% (95% CI, 40 to 70) respectively with aseptic loosening as the endpoint. The rate of aseptic loosening was higher for hips with pelvic discontinuity (p = 0.049) and less when the allograft had been in place for longer periods (p = 0.040). . The use of a cage or ring over structural allograft bone for massive uncontained defects in acetabular revision can restore host bone stock and facilitate subsequent re-revision surgery to a certain extent. Cite this article: Bone Joint J 2014;96-B:319–24


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1458 - 1463
1 Nov 2013
Won S Lee Y Ha Y Suh Y Koo K

Pre-operative planning for total hip replacement (THR) is challenging in hips with severe acetabular deformities, including those with a hypoplastic acetabulum or severe defects and in the presence of arthrodesis or ankylosis. We evaluated whether a Rapid Prototype (RP) model, which is a life-sized reproduction based on three-dimensional CT scans, can determine the feasibility of THR and provide information about the size and position of the acetabular component in severe acetabular deformities. THR was planned using an RP model in 21 complex hips in five men (five hips) and 16 women (16 hips) with a mean age of 47.7 years (24 to 70) at operation. An acetabular component was implanted successfully and THR completed in all hips. The acetabular component used was within 2 mm of the predicted size in 17 hips (80.9%). All of the acetabular components and femoral stems had radiological evidence of bone ingrowth and stability at the final follow-up, without any detectable wear or peri-prosthetic osteolysis. The RP model allowed a simulated procedure pre-operatively and was helpful in determining the feasibility of THR pre-operatively, and to decide on implant type, size and position in complex THRs.

Cite this article: Bone Joint J 2013;95-B:1458–63.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1419 - 1423
1 Nov 2009
Emms NW Buckley SC Stockley I Hamer AJ Kerry RM

Between 1990 and 2000, 123 hips in 110 patients were reconstructed for aseptic loosening using impaction bone grafting with frozen, irradiated, morsellised femoral heads and cemented acetabular components. This series was reported previously at a mean follow-up of five years. We have extended this follow-up and now describe the outcome of 86 hips in 74 patients at a mean of ten years. There have been 19 revisions, comprising nine for infection, seven for aseptic loosening and three for dislocation. In surviving acetabular reconstructions, union of the graft had occurred in 64 of 67 hips (95.5%).

Survival analysis for all indications at ten years was 83.3% (95% confidence interval (CI) 68 to 89) and 71.3% (95% CI 58 to 84) at 15 years.

Acetabular reconstruction using irradiated allograft and a cemented acetabular component is an effective method of reconstruction, providing results in the medium- to long-term comparable with those of reported series where non-irradiated freshly-frozen bone was used.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1148 - 1153
1 Sep 2009
Schreurs BW Keurentjes JC Gardeniers JWM Verdonschot N Slooff TJJH Veth RPH

We present an update of the clinical and radiological results of 62 consecutive acetabular revisions using impacted morsellised cancellous bone grafts and a cemented acetabular component in 58 patients, at a mean follow-up of 22.2 years (20 to 25). The Kaplan-Meier survivorship for the acetabular component with revision for any reason as the endpoint was 75% at 20 years (95% confidence interval (CI) 62 to 88) when 16 hips were at risk. Excluding two revisions for septic loosening at three and six years, the survivorship at 20 years was 79% (95% CI 67 to 93). With further exclusions of one revision of a well-fixed acetabular component after 12 years during a femoral revision and two after 17 years for wear of the acetabular component, the survivorship for aseptic loosening was 87% at 20 years (95% CI 76 to 97). At the final review 14 of the 16 surviving hips had radiographs available. There was one additional case of radiological loosening and four acetabular reconstructions showed progressive radiolucent lines in one or two zones.

Acetabular revision using impacted large morsellised bone chips (0.5 cm to 1 cm in diameter) and a cemented acetabular component remains a reliable technique for reconstruction, even when assessed at more than 20 years after surgery.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 296 - 300
1 Mar 2007
van Haaren EH Heyligers IC Alexander FGM Wuisman PIJM

We reviewed the results of 71 revisions of the acetabular component in total hip replacement, using impaction of bone allograft. The mean follow-up was 7.2 years (1.6 to 9.7). All patients were assessed according to the American Academy of Orthopedic Surgeons (AAOS) classification of bone loss, the amount of bone graft required, thickness of the graft layer, signs of graft incorporation and use of augmentation.

A total of 20 acetabular components required re-revision for aseptic loosening, giving an overall survival of 72% (95% CI, 54.4 to 80.5). Of these failures, 14 (70%) had an AAOS type III or IV bone defect. In the failed group, poor radiological and histological graft incorporation was seen.

These results suggest that impaction allografting in acetabular revision with severe bone defects may have poorer results than have previously been reported.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1430 - 1437
1 Nov 2006
Michalak KA Khoo PPC Yates PJ Day RE Wood DJ

Revision arthroplasty after infection can often be complicated by both extensive bone loss and a relatively high rate of re-infection. Using allograft to address the bone loss in such patients is controversial because of the perceived risk of bacterial infection from the use of avascular graft material. We describe 12 two-stage revisions for infection in which segmental allografts were loaded with antibiotics using iontophoresis, a technique using an electrical potential to drive ionised antibiotics into cortical bone.

Iontophoresis produced high levels of antibiotic in the allograft, which eluted into the surrounding tissues. We postulate that this offers protection from infection in the high-risk peri-operative period. None of the 12 patients who had two-stage revision with iontophoresed allografts had further infection after a mean period of 47 months (14 to 78).


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 12 | Pages 1611 - 1616
1 Dec 2005
Badhe NP Howard PW

We evaluated the use of a stemmed acetabular component in the treatment of severe acetabular deficiency during revision and complex primary total hip arthroplasty.

There were 31 hips of which 24 were revisions (20 for aseptic loosening, four for infection) and the remainder were complex primary arthroplasties. At a mean follow-up of 10.7 years (6 to 12.8), no component had been revised for aseptic loosening; one patient had undergone a revision of the polyethylene liner for wear. There was one failure because of infection. At the latest follow-up, the cumulative survival rate for aseptic loosening, with revision being the end-point, was 100%; for radiographic loosening it was 92% and for infection and radiographic loosening it was 88%. These results justify the continued use of this stemmed component for the reconstruction of severe acetabular deficiency.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 8 | Pages 1068 - 1072
1 Aug 2005
Morag G Zalzal P Liberman B Safir O Flint M Gross AE

Our aim was to determine if the height of the cup, lateralisation or the abduction angle correlated with functional outcome or survivorship in revision total hip replacement in patients with a previous diagnosis of developmental dysplasia of the hip. A retrospective investigation of 51 patients (63 hips) who had undergone revision total hip replacement was performed. The mean duration of follow-up was 119 months. Forty-one patients (52 hips) were available for both determination of functional outcome and survivorship analysis. Ten patients (11 hips) were only available for survivorship analysis.

The height of the cup was found to have a statistically significant correlation with functional outcome and a high hip centre correlated with a worse outcome score. Patients with a hip centre of less than 3.5 cm above the anatomical level had a statistically better survivorship of the cup than those with centres higher than this. Restoration of the height of the centre of the hip to as near the anatomical position as possible improved functional outcome and survivorship of the cup.