Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 536 - 541
1 Mar 2021
Ferlic PW Hauser L Götzen M Lindtner RA Fischler S Krismer M

Aims

The aim of this retrospective study was to compare the correction achieved using a convex pedicle screw technique and a low implant density achieved using periapical concave-sided screws and a high implant density. We hypothesized that there would be no difference in outcome between the two techniques.

Methods

We retrospectively analyzed a series of 51 patients with a thoracic adolescent idiopathic scoliosis. There were 26 patients in the convex pedicle screw group who had screws implanted periapically (Group 2) and a control group of 25 patients with bilateral pedicle screws (Group 1). The patients’ charts were reviewed and pre- and postoperative radiographs evaluated. Postoperative patient-reported outcome measures (PROMs) were recorded.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 547 - 552
1 Mar 2021
Magampa RS Dunn R

Aims

Spinal deformity surgery carries the risk of neurological injury. Neurophysiological monitoring allows early identification of intraoperative cord injury which enables early intervention resulting in a better prognosis. Although multimodal monitoring is the ideal, resource constraints make surgeon-directed intraoperative transcranial motor evoked potential (TcMEP) monitoring a useful compromise. Our experience using surgeon-directed TcMEP is presented in terms of viability, safety, and efficacy.

Methods

We carried out a retrospective review of a single surgeon’s prospectively maintained database of cases in which TcMEP monitoring had been used between 2010 and 2017. The upper limbs were used as the control. A true alert was recorded when there was a 50% or more loss of amplitude from the lower limbs with maintained upper limb signals. Patients with true alerts were identified and their case history analyzed.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1375 - 1383
3 Oct 2020
Zhang T Sze KY Peng ZW Cheung KMC Lui YF Wong YW Kwan KYH Cheung JPY

Aims

To investigate metallosis in patients with magnetically controlled growing rods (MCGRs) and characterize the metal particle profile of the tissues surrounding the rod.

Methods

This was a prospective observational study of patients with early onset scoliosis (EOS) treated with MCGRs and undergoing rod exchange who were consecutively recruited between February 2019 and January 2020. Ten patients were recruited (mean age 12 years (SD 1.3); 2 M:8 F). The configurations of the MCGR were studied to reveal the distraction mechanisms, with crucial rod parts being the distractable piston rod and the magnetically driven rotor inside the barrel of the MCGR. Metal-on-metal contact in the form of ring-like wear marks on the piston was found on the distracted portion of the piston immediately outside the barrel opening (BO) through which the piston rod distracts. Biopsies of paraspinal muscles and control tissue samples were taken over and away from the wear marks, respectively. Spectral analyses of the rod alloy and biopsies were performed to reveal the metal constituents and concentrations. Histological analyses of the biopsies were performed with haematoxylin and eosin staining.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11 | Pages 1546 - 1550
1 Nov 2012
Longo UG Loppini M Romeo G Maffulli N Denaro V

Wrong-level surgery is a unique pitfall in spinal surgery and is part of the wider field of wrong-site surgery. Wrong-site surgery affects both patients and surgeons and has received much media attention. We performed this systematic review to determine the incidence and prevalence of wrong-level procedures in spinal surgery and to identify effective prevention strategies. We retrieved 12 studies reporting the incidence or prevalence of wrong-site surgery and that provided information about prevention strategies. Of these, ten studies were performed on patients undergoing lumbar spine surgery and two on patients undergoing lumbar, thoracic or cervical spine procedures. A higher frequency of wrong-level surgery in lumbar procedures than in cervical procedures was found. Only one study assessed preventative strategies for wrong-site surgery, demonstrating that current site-verification protocols did not prevent about one-third of the cases. The current literature does not provide a definitive estimate of the occurrence of wrong-site spinal surgery, and there is no published evidence to support the effectiveness of site-verification protocols. Further prevention strategies need to be developed to reduce the risk of wrong-site surgery.