Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 850 - 856
1 Aug 2023
Azamgarhi T Warren S Fouch S Standing JF Gerrand C

The recently published Prophylactic Antibiotic Regimens In Tumor Surgery (PARITY) trial found no benefit in extending antibiotic prophylaxis from 24 hours to five days after endoprosthetic reconstruction for lower limb bone tumours. PARITY is the first randomized controlled trial in orthopaedic oncology and is a huge step forward in understanding antibiotic prophylaxis. However, significant gaps remain, including questions around antibiotic choice, particularly in the UK, where cephalosporins are avoided due to concerns of Clostridioides difficile infection. We present a review of the evidence for antibiotic choice, dosing, and timing, and a brief description of PARITY, its implication for practice, and the remaining gaps in our understanding.

Cite this article: Bone Joint J 2023;105-B(8):850–856.


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 575 - 580
2 May 2022
Hamad C Chowdhry M Sindeldecker D Bernthal NM Stoodley P McPherson EJ

Periprosthetic joint infection (PJI) is a difficult complication requiring a comprehensive eradication protocol. Cure rates have essentially stalled in the last two decades, using methods of antimicrobial cement joint spacers and parenteral antimicrobial agents. Functional spacers with higher-dose antimicrobial-loaded cement and antimicrobial-loaded calcium sulphate beads have emphasized local antimicrobial delivery on the premise that high-dose local antimicrobial delivery will enhance eradication. However, with increasing antimicrobial pressures, microbiota have responded with adaptive mechanisms beyond traditional antimicrobial resistance genes. In this review we describe adaptive resistance mechanisms that are relevant to the treatment of PJI. Some mechanisms are well known, but others are new. The objective of this review is to inform clinicians of the known adaptive resistance mechanisms of microbes relevant to PJI. We also discuss the implications of these adaptive mechanisms in the future treatment of PJI.

Cite this article: Bone Joint J 2022;104-B(5):575–580.


The Bone & Joint Journal
Vol. 101-B, Issue 2 | Pages 132 - 139
1 Feb 2019
Karczewski D Winkler T Renz N Trampuz A Lieb E Perka C Müller M

Aims

In 2013, we introduced a specialized, centralized, and interdisciplinary team in our institution that applied a standardized diagnostic and treatment algorithm for the management of prosthetic joint infections (PJIs). The hypothesis for this study was that the outcome of treatment would be improved using this approach.

Patients and Methods

In a retrospective analysis with a standard postoperative follow-up, 95 patients with a PJI of the hip and knee who were treated with a two-stage exchange between 2013 and 2017 formed the study group. A historical cohort of 86 patients treated between 2009 and 2011 not according to the standardized protocol served as a control group. The success of treatment was defined according to the Delphi criteria in a two-year follow-up.


The Bone & Joint Journal
Vol. 100-B, Issue 2 | Pages 127 - 133
1 Feb 2018
Tarabichi M Shohat N Goswami K Parvizi J

Aims. The diagnosis of periprosthetic joint infection can be difficult due to the high rate of culture-negative infections. The aim of this study was to assess the use of next-generation sequencing for detecting organisms in synovial fluid. Materials and Methods. In this prospective, single-blinded study, 86 anonymized samples of synovial fluid were obtained from patients undergoing aspiration of the hip or knee as part of the investigation of a periprosthetic infection. A panel of synovial fluid tests, including levels of C-reactive protein, human neutrophil elastase, total neutrophil count, alpha-defensin, and culture were performed prior to next-generation sequencing. Results. Of these 86 samples, 30 were alpha-defensin-positive and culture-positive (Group I), 24 were alpha-defensin-positive and culture-negative (Group II) and 32 were alpha-defensin-negative and culture-negative (Group III). Next-generation sequencing was concordant with 25 results for Group I. In four of these, it detected antibiotic resistant bacteria whereas culture did not. In another four samples with relatively low levels of inflammatory biomarkers, culture was positive but next-generation sequencing was negative. A total of ten samples had a positive next-generation sequencing result and a negative culture. In five of these, alpha-defensin was positive and the levels of inflammatory markers were high. In the other five, alpha-defensin was negative and the levels of inflammatory markers were low. While next-generation sequencing detected several organisms in each sample, in most samples with a higher probability of infection, there was a predominant organism present, while in those presumed not to be infected, many organisms were identified with no predominant organism. Conclusion. Pathogens causing periprosthetic infection in both culture-positive and culture-negative samples of synovial fluid could be identified by next-generation sequencing. Cite this article: Bone Joint J 2018;100-B:127–33


The Bone & Joint Journal
Vol. 97-B, Issue 10_Supple_A | Pages 20 - 29
1 Oct 2015
Gehrke T Alijanipour P Parvizi J

Periprosthetic joint infection (PJI) is one of the most feared and challenging complications following total knee arthroplasty. We provide a detailed description of our current understanding regarding the management of PJI of the knee, including diagnostic aids, pre-operative planning, surgical treatment, and outcome.

Cite this article: Bone Joint J 2015;97-B(10 Suppl A):20–9.