Implant-associated infection is a major source
of morbidity in orthopaedic surgery. There has been extensive research
into the development of materials that prevent biofilm formation,
and hence, reduce the risk of infection. Silver
Objectives. The cytotoxicity induced by cobalt ions (Co. 2+. ) and cobalt
Objectives. Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt
Aims. Extracellular vesicles (EVs) are
Aims. Platelet concentrates, like platelet-rich plasma (PRP) and platelet lysate (PL), are widely used in regenerative medicine, especially in bone regeneration. However, the lack of standard procedures and controls leads to high variability in the obtained results, limiting their regular clinical use. Here, we propose the use of platelet-derived extracellular vesicles (EVs) as an off-the-shelf alternative for PRP and PL for bone regeneration. In this article, we evaluate the effect of PL-derived EVs on the biocompatibility and differentiation of mesenchymal stromal cells (MSCs). Methods. EVs were obtained first by ultracentrifugation (UC) and then by size exclusion chromatography (SEC) from non-activated PL. EVs were characterized by transmission electron microscopy,
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment. Cite this article:
Objectives. The major problem with repair of an articular cartilage injury
is the extensive difference in the structure and function of regenerated,
compared with normal cartilage. Our work investigates the feasibility
of repairing articular osteochondral defects in the canine knee
joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate
(ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells
(BMSCs) and assesses its biological compatibility. Methods. The bone–cartilage scaffold was prepared as a laminated composite,
using hydroxyapatite
Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.Aims
Methods
To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism. In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.Aims
Methods
Brennan SA, Ní Fhoghlú C, Devitt BM, O’Mahony FJ, Brabazon D, Walsh A.Silver
Previous studies have suggested that selenium as a trace element is involved in bone health, but findings related to the specific effect of selenium on bone health remain inconclusive. Thus, we performed a meta-analysis by including all the relevant studies to elucidate the association between selenium status (dietary intake or serum selenium) and bone health indicators (bone mineral density (BMD), osteoporosis (OP), or fracture). PubMed, Embase, and Cochrane Library were systematically searched to retrieve relevant articles published before 15 November 2022. Studies focusing on the correlation between selenium and BMD, OP, or fracture were included. Effect sizes included regression coefficient (β), weighted mean difference (WMD), and odds ratio (OR). According to heterogeneity, the fixed-effect or random-effect model was used to assess the association between selenium and bone health.Aims
Methods
The aims of this study were to determine if an increasing serum cobalt (Co) and/or chromium (Cr) concentration is correlated with a decreasing Harris Hip Score (HHS) and Hip disability and Osteoarthritis Outcome Score (HOOS) in patients who received the Articular Surface Replacement (ASR) hip resurfacing arthroplasty (HRA), and to evaluate the ten-year revision rate and show if sex, inclination angle, and Co level influenced the revision rate. A total of 62 patients with an ASR-HRA were included and monitored yearly postoperatively. At follow-up, serum Co and Cr levels were measured and the HHS and the HOOS were scored. In addition, preoperative patient and implant variables and the need for revision surgery were recorded. We used a linear mixed model to relate the serum Co and Cr levels to different patient-reported outcome measures (PROMs). For the survival analyses we used the Kaplan-Meier and Cox regression model.Aims
Methods
Periprosthetic joint infection (PJI) remains an extremely challenging complication. We have focused on this issue more over the last decade than previously, but there are still many unanswered questions. We now have a workable definition that everyone should align to, but we need to continue to focus on identifying the organisms involved. Surgical strategies are evolving and care is becoming more patient-centred. There are some good studies under way. There are, however, still numerous problems to resolve, and the challenge of PJI remains a major one for the orthopaedic community. This annotation provides some up-to-date thoughts about where we are, and the way forward. There is still scope for plenty of research in this area. Cite this article:
Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver release rates. Safety issues, such as the occurrence of argyria, have been a cause for concern, and the efficacy of silver coatings in terms of preventing PJI is also controversial. The application of silver coatings is uncommon on parts of implants intended for cementless fixation in host bone, but this option might be highly desirable since the modification of implant surfaces in order to improve osteoconductivity can also increase bacterial adhesion. Therefore, an optimal silver content that inhibits bacterial colonization while maintaining osteoconductivity is crucial if silver were to be applied as a coating on parts intended for bone contact. This review summarizes the different methods used to apply silver coatings to arthroplasty components, with a focus on the amount and duration of silver release from the different coatings; the available experience with silver-coated implants that are in clinical use today; and future strategies to balance the effects of silver on bacteria and eukaryotic cells, and to develop silver-coated titanium components suitable for bone ingrowth. Cite this article:
Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) have been reported to be a promising cellular therapeutic approach for various human diseases. The current study aimed to investigate the mechanism of BMSC-derived exosomes carrying microRNA (miR)-136-5p in fracture healing. A mouse fracture model was initially established by surgical means. Exosomes were isolated from BMSCs from mice. The endocytosis of the mouse osteoblast MC3T3-E1 cell line was analyzed. CCK-8 and disodium phenyl phosphate microplate methods were employed to detect cell proliferation and alkaline phosphatase (ALP) activity, respectively. The binding of miR-136-5p to low-density lipoprotein receptor related protein 4 (LRP4) was analyzed by dual luciferase reporter gene assay. HE staining, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemistry were performed to evaluate the healing of the bone tissue ends, the positive number of osteoclasts, and the positive expression of β-catenin protein, respectively.Aims
Methods
Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular environment. This article reviews the results of the latest research into the role of lncRNAs in a variety of pathological processes of OA, in order to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article:
Preclinical data showed poly(methyl methacrylate) (PMMA) loaded with microsilver to be effective against a variety of bacteria. The purpose of this study was to assess patient safety of PMMA spacers with microsilver in prosthetic hip infections in a prospective cohort study. A total of 12 patients with prosthetic hip infections were included for a three-stage revision procedure. All patients received either a gentamicin-PMMA spacer (80 g to 160 g PMMA depending on hip joint dimension) with additional loading of 1% (w/w) of microsilver (0.8 g to 1.6 g per spacer) at surgery 1 followed by a gentamicin-PMMA spacer without microsilver at surgery 2 or vice versa. Implantation of the revision prosthesis was carried out at surgery 3.Objectives
Methods
The aim of this study was to compare the ability of tantalum, 3D porous titanium, antibiotic-loaded bone cement, and smooth titanium alloy to inhibit staphylococci in an in vitro environment, based on the evaluation of the zone of inhibition (ZOI). The hypothesis was that there would be no significant difference in the inhibition of methicillin-sensitive or methicillin-resistant A total of 30 beads made of three different materials (tantalum/3D porous titanium and smooth titanium alloy) were bathed for one hour in a solution of 1 g vancomycin in 20 ml of sterile water for injection (bath concentration: 50 mg/mL). Ten 1 cm3 cylinders of antibiotic-loaded cement were also created by mixing standard surgical cement with 1 g of vancomycin in standardized sterile moulds. The cylinders were then placed on agar plates inoculated with MSSA and MRSA. The ZOIs were measured each day and the cylinders were transferred onto a new inoculated plate.Aims
Methods
The ability to edit DNA at the nucleotide level using clustered regularly interspaced short palindromic repeats (CRISPR) systems is a relatively new investigative tool that is revolutionizing the analysis of many aspects of human health and disease, including orthopaedic disease. CRISPR, adapted for mammalian cell genome editing from a bacterial defence system, has been shown to be a flexible, programmable, scalable, and easy-to-use gene editing tool. Recent improvements increase the functionality of CRISPR through the engineering of specific elements of CRISPR systems, the discovery of new, naturally occurring CRISPR molecules, and modifications that take CRISPR beyond gene editing to the regulation of gene transcription and the manipulation of RNA. Here, the basics of CRISPR genome editing will be reviewed, including a description of how it has transformed some aspects of molecular musculoskeletal research, and will conclude by speculating what the future holds for the use of CRISPR-related treatments and therapies in clinical orthopaedic practice. Cite this article:
Previously, we reported the improved transfection efficiency of a plasmid DNA-chitosan (pDNA-CS) complex using a phosphorylatable nuclear localization signal-linked nucleic kinase substrate short peptide (pNNS) conjugated to chitosan (pNNS-CS). This study investigated the effects of pNNS-CS-mediated miR-140 and interleukin-1 receptor antagonist protein (IL-1Ra) gene transfection both in rabbit chondrocytes and a cartilage defect model. The pBudCE4.1-miR-140, pBudCE4.1-IL-1Ra, and negative control pBudCE4.1 plasmids were constructed and combined with pNNS-CS to form pDNA/pNNS-CS complexes. These complexes were transfected into chondrocytes or injected into the knee joint cavity.Objectives
Methods
Implant-related infection is one of the leading reasons for failure in orthopaedics and trauma, and results in high social and economic costs. Various antibacterial coating technologies have proven to be safe and effective both in preclinical and clinical studies, with post-surgical implant-related infections reduced by 90% in some cases, depending on the type of coating and experimental setup used. Economic assessment may enable the cost-to-benefit profile of any given antibacterial coating to be defined, based on the expected infection rate with and without the coating, the cost of the infection management, and the cost of the coating. After reviewing the latest evidence on the available antibacterial coatings, we quantified the impact caused by delaying their large-scale application. Considering only joint arthroplasties, our calculations indicated that for an antibacterial coating, with a final user’s cost price of €600 and able to reduce post-surgical infection by 80%, each year of delay to its large-scale application would cause an estimated 35 200 new cases of post-surgical infection in Europe, equating to additional hospital costs of approximately €440 million per year. An adequate reimbursement policy for antibacterial coatings may benefit patients, healthcare systems, and related research, as could faster and more affordable regulatory pathways for the technologies still in the pipeline. This could significantly reduce the social and economic burden of implant-related infections in orthopaedics and trauma.
Cardiac magnetic resonance (CMR) was used to assess whether cardiac function or tissue composition was affected in patients with well-functioning metal-on-metal hip resurfacing arthroplasties (MoMHRA) when compared with a group of controls, and to assess if metal ion levels correlated with any of the functional or structural parameters studied. In all, 30 participants with no significant cardiac history were enrolled: 20 patients with well-functioning MoMHRA at mean follow-up of 8.3 years post-procedure (ten unilateral, ten bilateral; 17 men, three women) and a case-matched control group of ten non-MoM total hip arthroplasty patients (six men, four women). The mean age of the whole cohort (study group and controls) at the time of surgery was 50.6 years (41.0 to 64.0). Serum levels of cobalt and chromium were measured, and all patients underwent CMR imaging, including cine, T2* measurements, T1 and T2 mapping, late gadolinium enhancement, and strain measurements.Aims
Patients and Methods
Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Objectives
Methods
There is increasing application of bone morphogenetic proteins
(BMPs) owing to their role in promoting fracture healing and bone
fusion. However, an optimal delivery system has yet to be identified.
The aims of this study were to synthesise bioactive BMP-2, combine
it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide)
(α-TCP/PLGA) nanocomposite and study its release from the composite. BMP-2 was synthesised using an Objectives
Methods
Nanotechnology is the study, production and controlled
manipulation of materials with a grain size <
100 nm. At this
level, the laws of classical mechanics fall away and those of quantum
mechanics take over, resulting in unique behaviour of matter in
terms of melting point, conductivity and reactivity. Additionally,
and likely more significant, as grain size decreases, the ratio
of surface area to volume drastically increases, allowing for greater interaction
between implants and the surrounding cellular environment. This
favourable increase in surface area plays an important role in mesenchymal
cell differentiation and ultimately bone–implant interactions. Basic science and translational research have revealed important
potential applications for nanotechnology in orthopaedic surgery,
particularly with regard to improving the interaction between implants
and host bone. Nanophase materials more closely match the architecture
of native trabecular bone, thereby greatly improving the osseo-integration
of orthopaedic implants. Nanophase-coated prostheses can also reduce
bacterial adhesion more than conventionally surfaced prostheses.
Nanophase selenium has shown great promise when used for tumour
reconstructions, as has nanophase silver in the management of traumatic
wounds. Nanophase silver may significantly improve healing of peripheral
nerve injuries, and nanophase gold has powerful anti-inflammatory
effects on tendon inflammation. Considerable advances must be made in our understanding of the
potential health risks of production, implantation and wear patterns
of nanophase devices before they are approved for clinical use.
Their potential, however, is considerable, and is likely to benefit
us all in the future. Cite this article:
We undertook a study of the anti-tumour effects of hyperthermia, delivered via magnetite cationic liposomes (MCLs), on local tumours and lung metastases in a mouse model of osteosarcoma. MCLs were injected into subcutaneous osteosarcomas (LM8) and subjected to an alternating magnetic field which induced a heating effect in MCLs. A control group of mice with tumours received MCLs but were not exposed to an AMF. A further group of mice with tumours were exposed to an AMF but had not been treated with MCLs. The distribution of MCLs and local and lung metastases was evaluated histologically. The weight and volume of local tumours and the number of lung metastases were determined. Expression of heat shock protein 70 was evaluated immunohistologically. Hyperthermia using MCLs effectively heated the targeted tumour to 45°C. The mean weight of the local tumour was significantly suppressed in the hyperthermia group (p = 0.013). The mice subjected to hyperthermia had significantly fewer lung metastases than the control mice (p = 0.005). Heat shock protein 70 was expressed in tumours treated with hyperthermia, but was not found in those tumours not exposed to hyperthermia. The results demonstrate a significant effect of hyperthermia on local tumours and reduces their potential to metastasise to the lung.
Bacterial infection in orthopaedic surgery can be devastating, and is associated with significant morbidity and poor functional outcomes, which may be improved if high concentrations of antibiotics can be delivered locally over a prolonged period of time. The two most widely used methods of doing this involve antibiotic-loaded polymethylmethacrylate or collagen fleece. The former is not biodegradable and is a surface upon which secondary bacterial infection may occur. Consequently, it has to be removed once treatment has finished. The latter has been used successfully as an adjunct to systemic antibiotics, but cannot effect a sustained release that would allow it to be used on its own, thereby avoiding systemic toxicity. This review explores the newer biodegradable carrier systems which are currently in the experimental phase of development and which may prove to be more effective in the treatment of osteomyelitis.
Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in
Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to wear debris is characterised by the presence of lymphoid cells and most likely occurs as a result of a cell-mediated hypersensitivity reaction to cell and tissue components altered by interaction with the material components of particulate wear, particularly metal ions released from cobalt-chrome wear particles. Cite this article: Professor N. A. Athanasou. The pathobiology and pathology of aseptic implant failure.
Mesenchymal stem-cell based therapies have been
proposed as novel treatments for intervertebral disc degeneration,
a prevalent and disabling condition associated with back pain. The
development of these treatment strategies, however, has been hindered
by the incomplete understanding of the human nucleus pulposus phenotype
and by an inaccurate interpretation and translation of animal to
human research. This review summarises recent work characterising
the nucleus pulposus phenotype in different animal models and in
humans and integrates their findings with the anatomical and physiological
differences between these species. Understanding this phenotype
is paramount to guarantee that implanted cells restore the native
functions of the intervertebral disc. Cite this article:
The biological significance of cobalt-chromium wear particles from metal-on-metal hip replacements may be different to the effects of the constituent metal ions in solution. Bacteria may be able to discriminate between particulate and ionic forms of these metals because of a transmembrane nickel/cobalt-permease. It is not known whether wear particles are bacteriocidal. We compared the doubling time of coagulase negative staphylococcus, Doubling time halved in metal-on-metal (p = 0.003) and metal-on-polyethylene (p = 0.131) particulate debris compared with the control. Bacterial nickel/cobalt-transporters allow metal ions but not wear particles to cross bacterial membranes. This may be useful for testing the biological characteristics of different wear debris. This experiment also shows that metal-on-metal hip wear debris is not bacteriocidal.
The number of arthroplasties being undertaken
is expected to grow year on year, and periprosthetic joint infections will
be an increasing socioeconomic burden. The challenge to prevent
and eradicate these infections has resulted in the emergence of
several new strategies, which are discussed in this review. Cite this article:
We carried out a cross-sectional study with analysis of the demographic, clinical and laboratory characteristics of patients with metal-on-metal hip resurfacing, ceramic-on-ceramic and metal-on-polyethylene hip replacements. Our aim was to evaluate the relationship between metal-on-metal replacements, the levels of cobalt and chromium ions in whole blood and the absolute numbers of circulating lymphocytes. We recruited 164 patients (101 men and 63 women) with hip replacements, 106 with metal-on-metal hips and 58 with non-metal-on-metal hips, aged <
65 years, with a pre-operative diagnosis of osteoarthritis and no pre-existing immunological disorders. Laboratory-defined T-cell lymphopenia was present in13 patients (15%) (CD8+ lymphopenia) and 11 patients (13%) (CD3+ lymphopenia) with unilateral metal-on-metal hips. There were significant differences in the absolute CD8+ lymphocyte subset counts for the metal-on-metal groups compared with each control group (p-values ranging between 0.024 and 0.046). Statistical modelling with analysis of covariance using age, gender, type of hip replacement, smoking and circulating metal ion levels, showed that circulating levels of metal ions, especially cobalt, explained the variation in absolute lymphocyte counts for almost all lymphocyte subsets.
Salubrinal is a synthetic agent that elevates phosphorylation
of eukaryotic translation initiation factor 2 alpha (eIF2α) and
alleviates stress to the endoplasmic reticulum. Previously, we reported
that in chondrocytes, Salubrinal attenuates expression and activity
of matrix metalloproteinase 13 (MMP13) through downregulating nuclear
factor kappa B (NFκB) signalling. We herein examine whether Salubrinal
prevents the degradation of articular cartilage in a mouse model
of osteoarthritis (OA). OA was surgically induced in the left knee of female mice. Animal
groups included age-matched sham control, OA placebo, and OA treated
with Salubrinal or Guanabenz. Three weeks after the induction of
OA, immunoblotting was performed for NFκB p65 and p-NFκB p65. At
three and six weeks, the femora and tibiae were isolated and the sagittal
sections were stained with Safranin O.Objectives
Methods
Lately, concerns have arisen following the use of large metal-on-metal bearings in hip replacements owing to reports of catastrophic soft-tissue reactions resulting in implant failure and associated complications. This review examines the literature and contemporary presentations on current clinical dilemmas in metal-on-metal hip replacement.
Abnormal wear of cobalt-containing metal-on-metal
joints is associated with inflammatory pseudotumours. Cobalt ions
activate human toll-like receptor 4 (TLR4), which normally responds
to bacterial lipopolysaccharide (LPS) in sepsis. Activation of TLR4
by LPS increases the expression of chemokines IL-8 and CXCL10, which
recruit leukocytes and activated T-cells, respectively. This study
was designed to determine whether cobalt induces a similar inflammatory
response to LPS by promoting the expression of IL-8 and CXCL10.
A human monocytic cell line, derived from acute monocytic leukaemia,
was treated with cobalt ions and expression of IL-8 and CXCL10 measured at
mRNA and protein levels. Cobalt-treated macrophages showed a 60-fold
increase in IL-8 mRNA, and an eightfold increase in production of
the mature chemokine (both p <
0.001); expression of the CXCL10
gene and protein was also significantly increased by cobalt (both
p <
0.001). Experiments were also performed in the presence of
CLI-095, a TLR4-specific antagonist which abrogated the cobalt-mediated
increase in IL-8 and CXCL10 expression. These findings suggest that cobalt ions induce inflammation similar
to that observed during sepsis by the simultaneous activation of
two TLR4-mediated signalling pathways. These pathways result in
increased production of IL-8 and CXCL10, and may be implicated in
pseudotumour formation following metal-on-metal replacement. Cite this article:
The aim of this study was to establish the natural
course of unrevised asymptomatic pseudotumours after metal-on-metal
(MoM) hip resurfacing during a six- to 12-month follow-up period.
We used repeated metal artefact reduction sequence (MARS)-magnetic
resonance imaging (MRI), serum metal ion analysis and clinical examination to
study 14 unrevised hips (mean patient age 52.7 years, 46 to 68,
5 female, 7 male) with a pseudotumour and 23 hips (mean patient
age 52.8 years, 38 to 69, 7 female, 16 male) without a pseudotumour.
The mean post-operative time to the first MARS-MRI scan was 4.3 years
(2.2 to 8.3), and mean time between the first and second MARS-MRI scan
was eight months (6 to 12). At the second MRI scan, the grade of
severity of the pseudotumour had not changed in 35 hips. One new
pseudotumour (Anderson C2 score, moderate) was observed, and one
pseudotumour was downgraded from C2 (moderate) to C1 (mild). In
general, the characteristics of the pseudotumours hardly changed. Repeated MARS-MRI scans within one year in patients with asymptomatic
pseudotumours after MoM hip resurfacing showed little or no variation.
In 23 patients without pseudotumour, one new asymptomatic pseudotumour
was detected. This is the first longitudinal study on the natural history of
pseudotumours using MARS-MRI scans in hip resurfacing, and mirrors
recent results for 28 mm diameter MoM total hip replacement. Cite this article:
The aim of this study was to evaluate whether
coating titanium discs with selenium in the form of sodium selenite decreased
bacterial adhesion of In order to evaluate bacterial adhesion, sterile titanium discs
were coated with increasing concentrations of selenium and incubated
with bacterial solutions of The tested Selenium coating is a promising method to reduce bacterial attachment
on prosthetic material. Cite this article:
We report a systematic review and meta-analysis
of the peer-reviewed literature focusing on metal sensitivity testing
in patients undergoing total joint replacement (TJR). Our purpose
was to assess the risk of developing metal hypersensitivity post-operatively
and its relationship with outcome and to investigate the advantages
of performing hypersensitivity testing. We undertook a comprehensive search of the citations quoted in
PubMed and EMBASE: 22 articles (comprising 3634 patients) met the
inclusion criteria. The frequency of positive tests increased after
TJR, especially in patients with implant failure or a metal-on-metal
coupling. The probability of developing a metal allergy was higher
post-operatively (odds ratio (OR) 1.52 (95% confidence interval
(CI) 1.06 to 2.31)), and the risk was further increased when failed
implants were compared with stable TJRs (OR 2.76 (95% CI 1.14 to
6.70)). Hypersensitivity testing was not able to discriminate between
stable and failed TJRs, as its predictive value was not statistically
proven. However, it is generally thought that hypersensitivity testing
should be performed in patients with a history of metal allergy
and in failed TJRs, especially with metal-on-metal implants and
when the cause of the loosening is doubtful.
We retrospectively analysed concentrations of chromium and cobalt ions in samples of synovial fluid and whole blood taken from a group of 92 patients with failed current-generation metal-on-metal hip replacements. We applied acid oxidative digestion to our trace metal analysis protocol, which found significantly higher levels of metal ion concentrations in blood and synovial fluid than a non-digestive method. Patients were subcategorised by mode of failure as either ‘unexplained pain’ or ‘defined causes’. Using this classification, chromium and cobalt ion levels were present over a wider range in synovial fluid and not as strongly correlated with blood ion levels as previously reported. There was no significant difference between metal ion concentrations and manufacturer of the implant, nor femoral head size below or above 50 mm. There was a moderately positive correlation between metal ion levels and acetabular component inclination angle as measured on three-dimensional CT imaging. Our results suggest that acid digestion of samples of synovial fluid samples is necessary to determine metal ion concentrations accurately so that meaningful comparisons can be made between studies.
We used interconnected porous calcium hydroxyapatite ceramic to bridge a rabbit ulnar defect. Two weeks after inducing the defect we percutaneously injected rabbit bone marrow-derived mesenchymal stromal cells labelled with ferumoxide. The contribution of an external magnetic targeting system to attract these cells into the ceramic and their effect on subsequent bone formation were evaluated. This technique significantly facilitated the infiltration of ferumoxide-labelled cells into ceramic and significantly contributed to the enhancement of bone formation even in the chronic phase. As such, it is potentially of clinical use to treat fractures, bone defects, delayed union and nonunion.
Ciprofloxacin hydrochloride-loaded microspheres were prepared by a spray-drying method using pectin and chitosan. The effects of different polymers and drug ratios were investigated. The most appropriate carriers were selected by The drug was released rapidly from the pectin carrier but this was more sustained in the chitosan formulation. Chitosan microspheres loaded with ciprofloxacin hydrochloride were more effective for the treatment of osteomyelitis than equivalent intramuscular antibiotics.
The long-term effects of metal-on-metal arthroplasty are currently under scrutiny because of the potential biological effects of metal wear debris. This review summarises data describing the release, dissemination, uptake, biological activity, and potential toxicity of metal wear debris released from alloys currently used in modern orthopaedics. The introduction of risk assessment for the evaluation of metal alloys and their use in arthroplasty patients is discussed and this should include potential harmful effects on immunity, reproduction, the kidney, developmental toxicity, the nervous system and carcinogenesis.