Aims. Despite limited clinical scientific backing, an additional trochanteric stabilizing plate (TSP) has been advocated when treating unstable trochanteric fractures with a sliding hip screw (SHS). We aimed to explore whether the TSP would result in less post operative fracture motion, compared to SHS alone. Methods. Overall, 31 patients with AO/OTA 31-A2 trochanteric fractures were randomized to either a SHS alone or a SHS with an additional TSP. To compare postoperative fracture motion, radiostereometric analysis (RSA) was performed before and after weightbearing, and then at four, eight, 12, 26, and 52 weeks. With the “after weightbearing” images as baseline, we calculated translations and rotations, including shortening and medialization of the femoral shaft. Results. Similar migration profiles were observed in all directions during the course of healing. At one year, eight patients in the SHS group and 12 patients in the TSP group were available for analysis, finding a clinically non-relevant, and statistically non-significant, difference in total translation of 1 mm (95% confidence interval -4.7 to 2.9) in favour of the TSP group. In line with the migration data, no significant differences in clinical outcomes were found. Conclusion. The TSP did not influence the course of healing or postoperative fracture motion compared to SHS alone. Based on our results, routine use of the TSP in AO/OTA 31-A2 trochanteric fractures cannot be recommended. The TSP has been shown, in biomechanical studies, to increase
Aims. The aim of the study was to investigate whether the primary
Aims. To investigate if preoperative CT improves detection of unstable trochanteric hip fractures. Methods. A single-centre prospective study was conducted. Patients aged 65 years or older with trochanteric hip fractures admitted to Stavanger University Hospital (Stavanger, Norway) were consecutively included from September 2020 to January 2022. Radiographs and CT images of the fractures were obtained, and surgeons made individual assessments of the fractures based on these. The assessment was conducted according to a systematic protocol including three classification systems (AO/Orthopaedic Trauma Association (OTA), Evans Jensen (EVJ), and Nakano) and questions addressing specific fracture patterns. An expert group provided a gold-standard assessment based on the CT images. Sensitivities and specificities of surgeons’ assessments were estimated and compared in regression models with correlations for the same patients. Intra- and inter-rater reliability were presented as Cohen’s kappa and Gwet’s agreement coefficient (AC1). Results. We included 120 fractures in 119 patients. Compared to radiographs, CT increased the sensitivity of detecting unstable trochanteric fractures from 63% to 70% (p = 0.028) and from 70% to 76% (p = 0.004) using AO/OTA and EVJ, respectively. Compared to radiographs alone, CT increased the sensitivity of detecting a large posterolateral trochanter major fragment or a comminuted trochanter major fragment from 63% to 76% (p = 0.002) and from 38% to 55% (p < 0.001), respectively. CT improved intra-rater reliability for
A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis. Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits.Aims
Methods
Aims. Cementless acetabular components rely on press-fit fixation for initial
Aims. One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant
Aims. Surgeons and most engineers believe that bone compaction improves implant primary
Aims. Exosomes (exo) are involved in the progression of osteoarthritis (OA). This study aimed to investigate the function of dysfunctional chondrocyte-derived exo (DC-exo) on OA in rats and rat macrophages. Methods. Rat-derived chondrocytes were isolated, and DCs induced with interleukin (IL)-1β were used for exo isolation. Rats with OA (n = 36) or macrophages were treated with DC-exo or phosphate-buffered saline (PBS). Macrophage polarization and autophagy, and degradation and chondrocyte activity of cartilage tissues, were examined. RNA sequencing was used to detect genes differentially expressed in DC-exo, followed by RNA pull-down and ribonucleoprotein immunoprecipitation (RIP). Long non-coding RNA osteoarthritis non-coding transcript (OANCT) and phosphoinositide-3-kinase regulatory subunit 5 (PIK3R5) were depleted in DC-exo-treated macrophages and OA rats, in order to observe macrophage polarization and cartilage degradation. The PI3K/AKT/mammalian target of rapamycin (mTOR) pathway activity in cells and tissues was measured using western blot. Results. DC-exo inhibited macrophage autophagy (p = 0.002) and promoted M1 macrophage polarization (p = 0.002). DC-exo at 20 μg/ml induced collagen degradation (p < 0.001) and inflammatory cell infiltration (p = 0.023) in rats. OANCT was elevated in DC (p < 0.001) and in cartilage tissues of OA patients (p < 0.001), and positively correlated with patients’ Kellgren-Lawrence grade (p < 0.001). PIK3R5 was increased in DC-exo-treated cartilage tissues (p < 0.001), and OANCT bound to fat mass and obesity-associated protein (FTO) (p < 0.001). FTO bound to PIK3R5 (p < 0.001) to inhibit the
Recognized anatomic variations that lead to patella instability include patella alta and trochlea dysplasia. Lateralization of the extensor mechanism relative to the trochlea is often considered to be a contributing factor; however, controversy remains as to the degree this contributes to instability and how this should be measured. As the tibial tuberosity-trochlear groove (TT-TG) is one of most common imaging measurements to assess lateralization of the extensor mechanism, it is important to understand its strengths and weaknesses. Care needs to be taken while interpreting the TT-TG value as it is affected by many factors. Medializing tibial tubercle osteotomy is sometimes used to correct the TT-TG, but may not truly address the underlying anatomical problem. This review set out to determine whether the TT-TG distance sufficiently summarizes the pathoanatomy, and if this assists with planning of surgery in patellar instability. Cite this article:
Aims. Unicompartmental knee arthroplasty (UKA) has become a popular method of treating knee localized osteoarthritis (OA). Additionally, the posterior cruciate ligament (PCL) is essential to maintaining the physiological kinematics and functions of the knee joint. Considering these factors, the purpose of this study was to investigate the biomechanical effects on PCL-deficient knees in medial UKA. Methods. Computational simulations of five subject-specific models were performed for intact and PCL-deficient UKA with tibial slopes. Anteroposterior (AP) kinematics and contact stresses of the patellofemoral (PF) joint and the articular cartilage were evaluated under the deep-knee-bend condition. Results. As compared to intact UKA, there was no significant difference in AP translation in PCL-deficient UKA with a low flexion angle, but AP translation significantly increased in the PCL-deficient UKA with high flexion angles. Additionally, the increased AP translation became decreased as the posterior tibial slope increased. The contact stress in the PF joint and the articular cartilage significantly increased in the PCL-deficient UKA, as compared to the intact UKA. Additionally, the increased posterior tibial slope resulted in a significant decrease in the contact stress on PF joint but significantly increased the contact stresses on the articular cartilage. Conclusion. Our results showed that the posterior
Aims. To develop an early implant instability murine model and explore the use of intermittent parathyroid hormone (iPTH) treatment for initially unstable implants. Methods. 3D-printed titanium implants were inserted into an oversized drill-hole in the tibiae of C57Bl/6 mice (n = 54). After implantation, the mice were randomly divided into three treatment groups (phosphate buffered saline (PBS)-control, iPTH, and delayed iPTH). Radiological analysis, micro-CT (µCT), and biomechanical pull-out testing were performed to assess implant loosening, bone formation, and osseointegration. Peri-implant tissue formation and cellular composition were evaluated by histology. Results. iPTH reduced radiological signs of loosening and led to an increase in peri-implant bone formation over the course of four weeks (timepoints: one week, two weeks, and four weeks). Observational histological analysis shows that iPTH prohibits the progression of fibrosis. Delaying iPTH treatment until after onset of peri-implant fibrosis still resulted in enhanced osseointegration and implant
Aims. The aim of this prospective cohort study was to evaluate the early migration of the TriFit cementless proximally coated tapered femoral stem using radiostereometric analysis (RSA). Methods. A total of 21 patients (eight men and 13 women) undergoing primary total hip arthroplasty (THA) for osteoarthritis of the hip were recruited in this study and followed up for two years. Two patients were lost to follow-up. All patients received a TriFit stem and Trinity Cup with a vitamin E-infused highly cross-linked ultra-high molecular weight polyethylene liner. Radiographs for RSA were taken postoperatively and then at three, 12, and 24 months. Oxford Hip Score (OHS), EuroQol five-dimension questionnaire (EQ-5D), and adverse events were reported. Results. At two years, the mean subsidence of the head and tip for the TriFit stem was 0.38 mm (SD 0.32) and 0.52 mm (SD 0.36), respectively. The total migration of the head and tip was 0.55 mm (SD 0.32) and 0.71 mm (SD 0.38), respectively. There were no statistically significant differences between the three to 12 months' migration (p = 0.105) and 12 to 24 months' migration (p = 0.694). The OHS and EQ-5D showed significant improvements at two years. Conclusion. The results of this study suggest that the TriFit femoral stem achieves initial
Aims. The cemented Oxford unicompartmental knee arthroplasty (OUKA) features two variants: single and twin peg OUKA. The purpose of this study was to assess the
Aims. The aim of this study was to determine the
Aims. The introduction of a novel design of total knee arthroplasty (TKA) must achieve outcomes at least as good as existing designs. A novel design of TKA with a reducing radius of the femoral component and a modified cam-post articulation has been released and requires assessment of the fixation to bone. Radiostereometric analysis (RSA) of the components within the first two postoperative years has been shown to be predictive of medium- to long-term fixation. The aim of this study was to assess the
Aims. Instability of the hip is the most common mode of failure after
reconstruction with a proximal femoral arthroplasty (PFA) using
an endoprosthesis after excision of a tumour. Small studies report
improved
Objectives. In order to address acetabular defects, porous metal revision acetabular components and augments have been developed, which require fixation to each other. The fixation technique that results in the smallest relative movement between the components, as well as its influence on the primary
Aims. The aim of this study was to describe the use of 3D-printed sacral endoprostheses to reconstruct the pelvic ring and re-establish spinopelvic
Aims. The
Aseptic loosening of the femoral component is
an important indication for revision surgery in unicompartmental knee
replacement (UKR). A new design of femoral component with an additional
peg was introduced for the cemented Oxford UKR to increase its