It is accepted that resurfacing hip replacement
preserves the bone mineral density (BMD) of the femur better than total
hip replacement (THR). However, no studies have investigated any
possible difference on the acetabular side. Between April 2007 and March 2009, 39 patients were randomised
into two groups to receive either a resurfacing or a THR and were
followed for two years. One patient’s resurfacing subsequently failed,
leaving 19 patients in each group. Resurfaced replacements maintained proximal femoral
Objectives. To quantify and compare peri-acetabular bone mineral density
(BMD) between a monoblock acetabular component using a metal-on-metal
(MoM) bearing and a modular titanium shell with a polyethylene (PE)
insert. The secondary outcome was to measure patient-reported clinical
function. Methods. A total of 50 patients (25 per group) were randomised to MoM
or metal-on-polyethlene (MoP). There were 27 women (11 MoM) and
23 men (14 MoM) with a mean age of 61.6 years (47.7 to 73.2). Measurements
of peri-prosthetic acetabular and contralateral hip (covariate)
BMD were performed at baseline and at one and two years’ follow-up.
The Western Ontario and McMaster Universities osteoarthritis index
(WOMAC), University of California, Los Angeles (UCLA) activity score,
Harris hip score, and RAND-36 were also completed at these intervals. Results. At two years, only zone 1 showed a loss in
Aims. Osteoporosis and abnormal bone metabolism may prove to be significant
factors influencing the outcome of arthroplasty surgery, predisposing
to complications of aseptic loosening and peri-prosthetic fracture.
We aimed to investigate baseline bone mineral density (BMD) and
bone turnover in patients about to undergo arthroplasty of the hip
and knee. Methods. We prospectively measured bone mineral density of the hip and
lumbar spine using dual-energy X-ray absorptiometry (DEXA) scans
in a cohort of 194 patients awaiting hip or knee arthroplasty. We
also assessed bone turnover using urinary deoxypyridinoline (DPD),
a type I collagen crosslink, normalised to creatinine. Results. The prevalence of DEXA proven hip osteoporosis (T-score ≤ -2.5)
among hip and knee arthroplasty patients was found to be low at
2.8% (4 of 143). Spinal osteoporosis prevalence was higher at 6.9%
(12 of 175). Sixty patients (42% (60 of 143)) had osteopenia or
osteoporosis of either the hip or spine. The mean T-score for the
hip was -0.34 (. sd. 1.23), which is within normal limits,
and the mean hip Z-score was positive at 0.87 (. sd. 1.17),
signifying higher-than-average
Stress shielding resulting in diminished bone
density following total knee replacement (TKR) may increase the
risk of migration and loosening of the prosthesis. This retrospective
study was designed to quantify the effects of the method of fixation
on peri-prosthetic tibial bone density beneath cemented and uncemented
tibial components of similar design and with similar long-term survival
rates. Standard radiographs taken between two months and 15 years
post-operatively were digitised from a matched group of TKRs using
cemented (n = 67) and uncemented (n = 67) AGC tibial prostheses.
Digital radiograph densitometry was used to quantify changes in
bone density over time. Age, length of follow-up, gender, body mass
index and alignment each significantly influenced the long-term
pattern of peri-prosthetic bone density. Similar long-term changes
in density irrespective of the method of fixation correlated well
with the high rate of survival of this TKR at 20 years, and suggest
that cemented and uncemented fixation are both equally viable. Cite this article:
To assess the sensitivity and specificity of self-reported osteoporosis
compared with dual energy X-ray absorptiometry (DXA) defined osteoporosis,
and to describe medication use among participants with the condition. Data were obtained from a population-based longitudinal study
and assessed for the prevalence of osteoporosis, falls, fractures
and medication use. DXA scans were also undertaken.Objectives
Methods
Aims. This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe
Aims. Osteoporosis (OP) is a metabolic bone disease, characterized by a decrease in bone mineral density (BMD). However, the research of regulatory variants has been limited for
Aims. The aim of this study was to compare the pattern of initial fixation and changes in periprosthetic bone mineral density (BMD) between patients who underwent total hip arthroplasty (THA) using a traditional fully hydroxyapatite (HA)-coated stem (T-HA group) and those with a newly introduced fully HA-coated stem (N-HA group). Methods. The study included 36 patients with T-HA stems and 30 with N-HA stems. Dual-energy X-ray absorptiometry was used to measure the change in periprosthetic
Aims. Despite the interest in the association of gut microbiota with bone health, limited population-based studies of gut microbiota and bone mineral density (BMD) have been made. Our aim is to explore the possible association between gut microbiota and
Aims. This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone metabolism in middle-aged and older adults. Methods. The databases of PubMed, Web of Science, and Cochrane Library were thoroughly searched from inception to July 2023. Results. The results revealed that vitamin K supplementation increased
Aims. The distal radius is a major site of osteoporotic bone loss resulting in a high risk of fragility fracture. This study evaluated the capability of a cortical index (CI) at the distal radius to predict the local bone mineral density (BMD). Methods. A total of 54 human cadaver forearms (ten singles, 22 pairs) (19 to 90 years) were systematically assessed by clinical radiograph (XR), dual-energy X-ray absorptiometry (DXA), CT, as well as high-resolution peripheral quantitative CT (HR-pQCT). Cortical bone thickness (CBT) of the distal radius was measured on XR and CT scans, and two cortical indices mean average (CBTavg) and gauge (CBTg) were determined. These cortical indices were compared to the
Aims. Osteoporosis can determine surgical strategy for total hip arthroplasty (THA), and perioperative fracture risk. The aims of this study were to use hip CT to measure femoral bone mineral density (BMD) using CT X-ray absorptiometry (CTXA), determine if systematic evaluation of preoperative femoral
Aims. Previous studies have suggested that selenium as a trace element is involved in bone health, but findings related to the specific effect of selenium on bone health remain inconclusive. Thus, we performed a meta-analysis by including all the relevant studies to elucidate the association between selenium status (dietary intake or serum selenium) and bone health indicators (bone mineral density (BMD), osteoporosis (OP), or fracture). Methods. PubMed, Embase, and Cochrane Library were systematically searched to retrieve relevant articles published before 15 November 2022. Studies focusing on the correlation between selenium and
Aims. Assessment of bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) is a well-established clinical technique, but it is not available in the acute trauma setting. Thus, it cannot provide a preoperative estimation of
Aims. Uncemented metal acetabular components show good osseointegration, but material stiffness causes stress shielding and retroacetabular bone loss. Cemented monoblock polyethylene components load more physiologically; however, the cement bone interface can suffer fibrous encapsulation and loosening. It was hypothesized that an uncemented titanium-sintered monoblock polyethylene component may offer the optimum combination of osseointegration and anatomical loading. Methods. A total of 38 patients were prospectively enrolled and received an uncemented monoblock polyethylene acetabular (pressfit) component. This single cohort was then retrospectively compared with previously reported randomized cohorts of cemented monoblock (cemented) and trabecular metal (trabecular) acetabular implants. The primary outcome measure was periprosthetic bone density using dual-energy x-ray absorptiometry over two years. Secondary outcomes included radiological and clinical analysis. Results. Although there were differences in the number of males and females in each group, no significant sex bias was noted (p = 0.080). Furthermore, there was no significant difference in age (p = 0.910) or baseline lumbar bone mineral density (BMD) (p = 0.998) found between any of the groups (pressfit, cemented, or trabecular). The pressfit implant initially behaved like the trabecular component with an immediate fall in
Aims. The aim of this study was to compare the mid-term patient-reported outcome, bone remodelling, and migration of a short stem (Collum Femoris Preserving; CFP) with a conventional uncemented stem (Corail). Methods. Of 81 patients who were initially enrolled, 71 were available at five years’ follow-up. The outcomes at two years have previously been reported. The primary outcome measure was the clinical result assessed using the Oxford Hip Score (OHS). Secondary outcomes were the migration of the stem, measured using radiostereometric analysis (RSA), change of bone mineral density (BMD) around the stem, the development of radiolucent lines, and additional patient-reported outcome measures (PROMs). Results. There were no statistically significant differences between the groups regarding PROMs (median OHS (CFP 45 (interquartile range (IQR) 35 to 48); Corail 45 (IQR 40 to 48); p = 0.568). RSA showed stable stems in both groups, with little or no further subsidence between two and five years. Resorption of the femoral neck was evident in nine patients in the CFP group and in none of the 15 Corail stems with a collar that could be studied. Dual X-ray absorbiometry showed a significantly higher loss of
Aims. Low-energy distal radius fractures (DRFs) are the most common upper arm fractures correlated with bone fragility. Vitamin D deficiency is an important risk factor associated with DRFs. However, the relationship between DRF severity and vitamin D deficiency is not elucidated. Therefore, this study aimed to identify the correlation between DRF severity and serum 25-hydroxyvitamin-D level, which is an indicator of vitamin D deficiency. Methods. This multicentre retrospective observational study enrolled 122 female patients aged over 45 years with DRFs with extension deformity. DRF severity was assessed by three independent examiners using 3D CT. Moreover, it was categorized based on the AO classification, and the degree of articular and volar cortex comminution was evaluated. Articular comminution was defined as an articular fragment involving three or more fragments, and volar cortex comminution as a fracture in the volar cortex of the distal fragment. Serum 25-hydroxyvitamin-D level, bone metabolic markers, and bone mineral density (BMD) at the lumbar spine, hip, and wrist were evaluated six months after injury. According to DRF severity, serum 25-hydroxyvitamin-D level, parameters correlated with bone metabolism, and
Aims. Dual mobility (DM) implants have been shown to reduce the dislocation rate after total hip arthroplasty (THA), but there remain concerns about the use of cobalt chrome liners inserted into titanium shells. The aim of this study was to assess the clinical outcomes, metal ion levels, and periprosthetic femoral bone mineral density (BMD) at mid-term follow-up in young, active patients receiving a modular DM THA. Methods. This was a prospective study involving patients aged < 65 years, with a BMI of < 35 kg/m. 2. , and University of California, Los Angeles activity score of > 6 who underwent primary THA with a modular cobalt chrome acetabular liner, highly cross-linked polyethylene mobile bearing, and a cementless titanium femoral stem. Patient-reported outcome measures, whole blood metal ion levels (μg/l), and periprosthetic femoral
Aims. This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images. Methods. The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm. 3. ). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal
Objectives. Several genome-wide association studies (GWAS) of bone mineral density (BMD) have successfully identified multiple susceptibility genes, yet isolated susceptibility genes are often difficult to interpret biologically. The aim of this study was to unravel the genetic background of
Aims. To analyze the short-term outcome of two types of total wrist arthroplasty (TWA) in terms of wrist function, migration, and periprosthetic bone behaviour. Methods. A total of 40 patients suffering from non-rheumatoid wrist arthritis were enrolled in a randomized controlled trial comparing the ReMotion and Motec TWAs. Patient-rated and functional outcomes, radiological changes, blood metal ion levels, migration measured by model-based radiostereometric analysis (RSA), bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA), complications, loosening, and revision rates at two years were compared. Results. Patient-Rated Wrist and Hand Evaluation (PRWHE) scores, abbreviated version of the Disabilities of the Arm, Shoulder and Hand questionnaire (QuickDASH) scores, and pain improved similarly and significantly in both groups. Wrist motion improved significantly in the Motec group only, and forearm rotation in the ReMotion group only. Cobalt (Co) and chromium (Cr) blood ion levels were significantly higher in the metal-on-metal (MoM) Motec group than in the metal-on-polyethylene (MoP) ReMotion group. Mean total translation was 0.65 mm (95% confidence interval (CI) 0.26 to 1.12) and 0.27 mm (95% CI 0.14 to 0.47) for the ReMotion carpal and radial components, and 0.32 mm (95% CI 0.22 to 0.45) and 0.26 mm (95% CI 0.20 to 0.34) for the Motec metacarpal and radial components, respectively. Apart from dorsal and volar tilts, which were significantly higher for the radial ReMotion than for the Motec component, no significant differences in absolute migration occurred.
Aims. This study investigated the effects of β-caryophyllene (BCP) on protecting bone from vitamin D deficiency in mice fed on a diet either lacking (D-) or containing (D+) vitamin D. Methods. A total of 40 female mice were assigned to four treatment groups (n = 10/group): D+ diet with propylene glycol control, D+ diet with BCP, D-deficient diet with control, and D-deficient diet with BCP. The D+ diet is a commercial basal diet, while the D-deficient diet contains 0.47% calcium, 0.3% phosphorus, and no vitamin D. All the mice were housed in conditions without ultraviolet light. Bone properties were evaluated by X-ray micro-CT. Serum levels of klotho were measured by enzyme-linked immunosorbent assay. Results. Under these conditions, the D-deficient diet enhanced the length of femur and tibia bones (p < 0.050), and increased bone volume (BV; p < 0.010) and trabecular bone volume fraction (BV/TV; p < 0.010) compared to D+ diet. With a diet containing BCP, the mice exhibited higher BV and bone mineral density (BMD; p < 0.050) than control group. The trabecular and cortical bone were also affected by vitamin D and BCP. In addition, inclusion of dietary BCP improved the serum concentrations of klotho (p < 0.050). In mice, klotho regulates the expression level of cannabinoid type 2 receptor (Cnr2) and fibroblast growth factor 23 (Fgf23) through CD300a. In humans, data suggest that klotho is connected to
Aims. The association of auraptene (AUR), a 7-geranyloxycoumarin, on osteoporosis and its potential pathway was predicted by network pharmacology and confirmed in experimental osteoporotic mice. Methods. The network of AUR was constructed and a potential pathway predicted by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) terms enrichment. Female ovariectomized (OVX) Institute of Cancer Research mice were intraperitoneally injected with 0.01, 0.1, and 1 mM AUR for four weeks. The bone mineral density (BMD) level was measured by dual-energy X-ray absorptiometry. The bone microstructure was determined by histomorphological changes in the femora. In addition, biochemical analysis of the serum and assessment of the messenger RNA (mRNA) levels of osteoclastic markers were performed. Results. In total, 65.93% of the genes of the AUR network matched with osteoporosis-related genes. Osteoclast differentiation was predicted to be a potential pathway of AUR in osteoporosis. Based on the network pharmacology, the
We sought to determine whether specific characteristics
of vertebral fractures in elderly men are associated with low bone
mineral density (BMD) and osteoporosis. . Mister osteoporosis Sweden is a population based cohort study
involving 3014 men aged 69 to 81 years. Of these, 1427 had readable
lateral radiographs of the thoracic and lumbar spine. Total body
(TB)
Objectives. The goal of this study is to investigate the relation between indicators of osteoporosis (i.e., bone mineral density (BMD), and Cortical Index (CI)) and the complexity of a fracture of the proximal humerus as a result of a low-energy trauma. Methods. A retrospective chart review of 168 patients (mean age 67.2 years, range 51 to 88.7) with a fracture of the proximal humerus between 2007 and 2011, whose
Objectives. Our primary aim was to describe migration of the Exeter stem with a 32 mm head on highly crosslinked polyethylene and whether this is influenced by age. Our secondary aims were to assess functional outcome, satisfaction, activity, and bone mineral density (BMD) according to age. Patients and Methods. A prospective cohort study was conducted. Patients were recruited into three age groups: less than 65 years (n = 65), 65 to 74 years (n = 68), and 75 years and older (n = 67). There were 200 patients enrolled in the study, of whom 115 were female and 85 were male, with a mean age of 69.9 years (sd 9.5, 42 to 92). They were assessed preoperatively, and at three, 12 and, 24 months postoperatively. Stem migration was assessed using Einzel-Bild-Röntgen-Analyse (EBRA). Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Harris Hip Score (HHS), Hip Disability and Osteoarthritis Outcome Score (HOOS), EuroQol-5 domains questionnaire (EQ-5D), short form-36 questionnaire (SF-36,) and patient satisfaction were used to assess outcome. The Lower Extremity Activity Scale (LEAS), Timed Up and Go (TUG) test, and activPAL monitor (energy expelled, time lying/standing/walking and step count) were used to assess activity. The
Aims. Modular dual mobility (DM) prostheses in which a cobalt-chromium liner is inserted into a titanium acetabular shell (vs a monoblock acetabular component) have the advantage of allowing supplementary screw fixation, but the potential for corrosion between the liner and acetabulum has raised concerns. While DM prostheses have shown improved stability in patients deemed ‘high-risk’ for dislocation undergoing total hip arthroplasty (THA), their performance in young, active patients has not been reported. This study’s purpose was to assess clinical outcomes, metal ion levels, and periprosthetic femoral bone mineral density (BMD) in young, active patients receiving a modular DM acetabulum and recently introduced titanium, proximally coated, tapered femoral stem design. Patients and Methods. This was a prospective study of patients between 18 and 65 years of age, with a body mass index (BMI) < 35 kg/m. 2. and University of California at Los Angeles (UCLA) activity score > 6, who received a modular cobalt-chromium acetabular liner, highly crosslinked polyethylene mobile bearing, and cementless titanium femoral stem for their primary THA. Patients with a history of renal disease and metal hardware elsewhere in the body were excluded. A total of 43 patients (30 male, 13 female; mean age 52.6 years (. sd. 6.5)) were enrolled. All patients had a minimum of two years’ clinical follow-up. Patient-reported outcome measures, whole blood metal ion levels (ug/l), and periprosthetic femoral
Aims. One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined. Methods. A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD). Results. The
Bone mineral density (BMD) around the femoral component has been reported to decrease after total knee replacement (TKR) because of stress shielding. Our aim was to determine whether a cemented mobile-bearing component reduced the post-operative loss of
Total knee arthroplasty (TKA) is known to lead
to a reduction in periprosthetic bone mineral density (BMD). In theory,
this may lead to migration, instability and aseptic loosening of
the prosthetic components. Bisphosphonates inhibit bone resorption
and may reduce this loss in
We studied the bone mineral density (BMD) and
the bone mineral content (BMC) of the proximal tibia in patients with
a well-functioning uncemented Oxford medial compartment arthroplasty
using the Lunar iDXA bone densitometer. Our hypothesis was that
there would be decreased
We undertook a randomised prospective follow-up study of changes in peri-prosthetic bone mineral density (BMD) after hip resurfacing and compared them with the results after total hip replacement. A total of 59 patients were allocated to receive a hip resurfacing (n = 29) or an uncemented distally fixed total hip replacement (n = 30). The
Objectives. Researchers continue to seek easier ways to evaluate the quality of bone and screen for osteoporosis and osteopenia. Until recently, radiographic images of various parts of the body, except the distal femur, have been reappraised in the light of dual-energy X-ray absorptiometry (DXA) findings. The incidence of osteoporotic fractures around the knee joint in the elderly continues to increase. The aim of this study was to propose two new radiographic parameters of the distal femur for the assessment of bone quality. Methods. Anteroposterior radiographs of the knee and bone mineral density (BMD) and T-scores from DXA scans of 361 healthy patients were prospectively analyzed. The mean cortical bone thickness (CBTavg) and the distal femoral cortex index (DFCI) were the two parameters that were proposed and measured. Intra- and interobserver reliabilities were assessed. Correlations between the
Objectives. The aim of the current study was to assess whether calcaneal broadband ultrasound attenuation (BUA) can predict whole body and regional dual-energy x-ray absorptiometry (DXA)-derived bone mass in healthy, Australian children and adolescents at different stages of maturity. Methods. A total of 389 boys and girls across a wide age range (four to 18 years) volunteered to participate. The estimated age of peak height velocity (APHV) was used to classify children into pre-, peri-, and post-APHV groups. BUA was measured at the non-dominant heel with quantitative ultrasonometry (QUS) (Lunar Achilles Insight, GE), while bone mineral density (BMD) and bone mineral content (BMC) were examined at the femoral neck, lumbar spine and whole body (DXA, XR-800, Norland). Associations between BUA and DXA-derived measures were examined with Pearson correlations and linear regression. Participants were additionally ranked in quartiles for QUS and DXA measures in order to determine agreement in rankings. Results. For the whole sample, BUA predicted 29% of the study population variance in whole body BMC and
The primary purpose of this study of metal-on-metal
(MoM) hip resurfacing was to compare the effect of using a cementless
or cemented femoral component on the subsequent bone mineral density
(BMD) of the femoral neck. . This was a single-centre, prospective, double-blinded control
trial which randomised 120 patients (105 men and 15 women) with
a mean age of 49.4 years (21 to 68) to receive either a cemented
or cementless femoral component. Follow-up was to two years. Outcome
measures included total and six-point region-of-interest
The aims of this study were to examine the repeatability of measurements of bone mineral density (BMD) around a cemented polyethylene Charnley acetabular component using dual-energy x-ray absorptiometry and to determine the longitudinal pattern of change in
In patients with osteoporosis there is always
a strong possibility that pedicle screws will loosen. This makes
it difficult to select the appropriate osteoporotic patient for
a spinal fusion. The purpose of this study was to determine the
correlation between bone mineral density (BMD) and the magnitude
of torque required to insert a pedicle screw. To accomplish this,
181 patients with degenerative disease of the lumbar spine were
studied prospectively. Each underwent dual-energy x-ray absorptiometry
(DEXA) and intra-operative measurement of the torque required to
insert each pedicle screw. The levels of torque generated in patients
with osteoporosis and osteopenia were significantly lower than those
achieved in normal patients. Positive correlations were observed between
BMD and T-value at the instrumented lumbar vertebrae, mean
Our aim in this prospective study was to compare the bone mineral density (BMD) around cementless acetabular and femoral components which were identical in geometry and had the same alumina modular femoral head, but differed in regard to the material of the acetabular liners (alumina ceramic or polyethylene) in 50 patients (100 hips) who had undergone bilateral simultaneous primary total hip replacement. Dual energy X-ray absorptiometry scans of the pelvis and proximal femur were obtained at one week, at one year, and annually thereafter during the five-year period of the study. At the final follow-up, the mean
Aims. To examine the relationship of sex steroid hormones with osteopenia in a nationally representative sample of men in the USA. Methods. Data on bone mineral density (BMD), serum sex hormones, dairy consumption, smoking status, and body composition were available for 806 adult male participants of the cross-sectional National Health and Nutrition Examination Survey (NHANES, 1999-2004). We estimated associations between quartiles of total and estimated free oestradiol (E2) and testosterone (T) and osteopenia (defined as 1 to 2.5 SD below the mean
Objectives. In total hip arthroplasty (THA), the cementless, tapered-wedge stem design contributes to achieving initial stability and providing optimal load transfer in the proximal femur. However, loading conditions on the femur following THA are also influenced by femoral structure. Therefore, we determined the effects of tapered-wedge stems on the load distribution of the femur using subject-specific finite element models of femurs with various canal shapes. Patients and Methods. We studied 20 femurs, including seven champagne flute-type femurs, five stovepipe-type femurs, and eight intermediate-type femurs, in patients who had undergone cementless THA using the Accolade TMZF stem at our institution. Subject–specific finite element (FE) models of pre- and post-operative femurs with stems were constructed and used to perform FE analyses (FEAs) to simulate single-leg stance. FEA predictions were compared with changes in bone mineral density (BMD) measured for each patient during the first post-operative year. Results. Stovepipe models implanted with large-size stems had significantly lower equivalent stress on the proximal-medial area of the femur compared with champagne-flute and intermediate models, with a significant loss of
Objectives. MicroRNAs (miRNAs) have been reported as key regulators of bone formation, signalling, and repair. Fracture healing is a proliferative physiological process where the body facilitates the repair of a bone fracture. The aim of our study was to explore the effects of microRNA-186 (miR-186) on fracture healing through the bone morphogenetic protein (BMP) signalling pathway by binding to Smad family member 6 (SMAD6) in a mouse model of femoral fracture. Methods. Microarray analysis was adopted to identify the regulatory miR of SMAD6. 3D micro-CT was performed to assess the bone volume (BV), bone volume fraction (BVF, BV/TV), and bone mineral density (BMD), followed by a biomechanical test for maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. The positive expression of SMAD6 in fracture tissues was measured. Moreover, the miR-186 level, messenger RNA (mRNA) level, and protein levels of SMAD6, BMP-2, and BMP-7 were examined. Results. MicroRNA-186 was predicted to regulate SMAD6. Furthermore, SMAD6 was verified as a target gene of miR-186. Overexpressed miR-186 and SMAD6 silencing resulted in increased callus formation,
Aims. Idiopathic scoliosis is the most common spinal deformity in adolescents and children. The aetiology of the disease remains unknown. Previous studies have shown a lower bone mineral density in individuals with idiopathic scoliosis, which may contribute to the causation. The aim of the present study was to compare bone health in adolescents with idiopathic scoliosis with controls. Methods. We included 78 adolescents with idiopathic scoliosis (57 female patients) at a mean age of 13.7 years (8.5 to 19.6) and 52 age- and sex-matched healthy controls (39 female patients) at a mean age of 13.8 years (9.1 to 17.6). Mean skeletal age, estimated according to the Tanner-Whitehouse 3 system (TW3), was 13.4 years (7.4 to 17.8) for those with idiopathic scoliosis, and 13.1 years (7.4 to 16.5) for the controls. Mean Cobb angle for those with idiopathic scoliosis was 29° (SD 11°). All individuals were scanned with dual energy x-ray absorptiometry (DXA) and peripheral quantitative CT (pQCT) of the left radius and tibia to assess bone density. Statistical analyses were performed with independent-samples t-test, the Mann-Whitney U test, and the chi-squared test. Results. Compared with controls, adolescents with idiopathic scoliosis had mean lower DXA values in the left femoral neck (0.94 g/cm. 2. (SD 0.14) vs 1.00 g/cm. 2. (SD 0.15)), left total hip (0.94 g/cm. 2. (SD 0.14) vs 1.01 g/cm. 2. (SD 0.17)), L1 to L4 (0.99 g/cm. 2. (SD 0.15) vs 1.06 g/cm. 2. (SD 0.17)) and distal radius (0.35 g/cm. 2. (SD 0.07) vs 0.39 g/cm. 2. (SD 0.08; all p ≤ 0.024), but not in the mid-radius (0.72 g/cm. 2. vs 0.74 g/cm. 2. ; p = 0.198, independent t-test) and total body less head (1,559 g (SD 380) vs 1,649 g (SD 492; p = 0.0.247, independent t-test). Compared with controls, adolescents with idiopathic scoliosis had lower trabecular volume bone mineral density (BMD) on pQCT in the distal radius (184.7 mg/cm. 3. (SD 40.0) vs 201.7 mg/cm. 3. (SD 46.8); p = 0.029), but not in other parts of the radius or the tibia (p ≥ 0.062, Mann-Whitney U test). Conclusion. In the present study, idiopathic scoliosis patients seemed to have lower
Objective. In ex vivo hip fracture studies femoral pairs
are split to create two comparable test groups. When more than two
groups are required, or if paired femurs cannot be obtained, group
allocation according to bone mineral density (BMD) is sometimes
performed. In this statistical experiment we explore how this affects
experimental results and sample size considerations. Methods. In a hip fracture experiment, nine pairs of human cadaver femurs
were tested in a paired study design. The femurs were then re-matched
according to
Aims. The aim of this study was to compare the peak pull-out force
(PPF) of pedicle-lengthening screws (PLS) and traditional pedicle
screws (TPS) using instant and cyclic fatigue testing. Materials and Methods. A total of 60 lumbar vertebrae were divided into six groups:
PLS submitted to instant pull-out and fatigue-resistance testing
(groups A1 and A2, respectively), TPS submitted to instant pull-out
and fatigue-resistance testing (groups B1 and B2, respectively)
and PLS augmented with 2 ml polymethylmethacrylate, submitted to
instant pull-out and fatigue-resistance testing (groups C1 and C2,
respectively). The PPF and normalized PPF (PPFn) for bone mineral density
(BMD) were compared within and between all groups. Results. In all groups,
Our aim was to determine the precision of the measurements of bone mineral density (BMD) by dual-energy x-ray absorptiometry in the proximal femur before and after implantation of an uncemented implant, with particular regard to the significance of retro- and prospective studies. We examined 60 patients to determine the difference in preoperative
Objectives. Osteoporosis is a metabolic disease resulting in progressive loss of bone mass as measured by bone mineral density (BMD). Physical exercise has a positive effect on increasing or maintaining
We aimed to evaluate the precision and longitudinal sensitivity of measurement of bone mineral density (BMD) in the pelvis and to determine the effect of bone cement on the measurement of
The aim of this study was to report the patterns of symptoms and insufficiency fractures in patients with tumour-induced osteomalacia (TIO) to allow the early diagnosis of this rare condition. The study included 33 patients with TIO who were treated between January 2000 and June 2022. The causative tumour was detected in all patients. We investigated the symptoms and evaluated the radiological patterns of insufficiency fractures of the rib, spine, and limbs.Aims
Methods
The “2 to 10% strain rule” for fracture healing has been widely interpreted to mean that interfragmentary strain greater than 10% predisposes a fracture to nonunion. This interpretation focuses on the gap-closing strain (axial micromotion divided by gap size), ignoring the region around the gap where osteogenesis typically initiates. The aim of this study was to measure gap-closing and 3D interfragmentary strains in plated ovine osteotomies and associate local strain conditions with callus mineralization. MicroCT scans of eight female sheep with plated mid-shaft tibial osteotomies were used to create image-based finite element models. Virtual mechanical testing was used to compute postoperative gap-closing and 3D continuum strains representing compression (volumetric strain) and shear deformation (distortional strain). Callus mineralization was measured in zones in and around the osteotomy gap.Aims
Methods
The aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure. Three impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans.Aims
Methods