Advertisement for orthosearch.org.uk
Results 1 - 42 of 42
Results per page:
Bone & Joint Research
Vol. 10, Issue 12 | Pages 820 - 829
15 Dec 2021
Schmidutz F Schopf C Yan SG Ahrend M Ihle C Sprecher C

Aims. The distal radius is a major site of osteoporotic bone loss resulting in a high risk of fragility fracture. This study evaluated the capability of a cortical index (CI) at the distal radius to predict the local bone mineral density (BMD). Methods. A total of 54 human cadaver forearms (ten singles, 22 pairs) (19 to 90 years) were systematically assessed by clinical radiograph (XR), dual-energy X-ray absorptiometry (DXA), CT, as well as high-resolution peripheral quantitative CT (HR-pQCT). Cortical bone thickness (CBT) of the distal radius was measured on XR and CT scans, and two cortical indices mean average (CBTavg) and gauge (CBTg) were determined. These cortical indices were compared to the BMD of the distal radius determined by DXA (areal BMD (aBMD)) and HR-pQCT (volumetric BMD (vBMD)). Pearson correlation coefficient (r) and intraclass correlation coefficient (ICC) were used to compare the results and degree of reliability. Results. The CBT could accurately be determined on XRs and highly correlated to those determined on CT scans (r = 0.87 to 0.93). The CBTavg index of the XRs significantly correlated with the BMD measured by DXA (r = 0.78) and HR-pQCT (r = 0.63), as did the CBTg index with the DXA (r = 0.55) and HR-pQCT (r = 0.64) (all p < 0.001). A high correlation of the BMD and CBT was observed between paired specimens (r = 0.79 to 0.96). The intra- and inter-rater reliability was excellent (ICC 0.79 to 0.92). Conclusion. The cortical index (CBTavg) at the distal radius shows a close correlation to the local BMD. It thus can serve as an initial screening tool to estimate the local bone quality if quantitative BMD measurements are unavailable, and enhance decision-making in acute settings on fracture management or further osteoporosis screening. Cite this article: Bone Joint Res 2021;10(12):820–829


Bone & Joint Research
Vol. 6, Issue 9 | Pages 542 - 549
1 Sep 2017
Arnold M Zhao S Ma S Giuliani F Hansen U Cobb JP Abel RL Boughton O

Objectives

Microindentation has the potential to measure the stiffness of an individual patient’s bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness.

Methods

A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded.


Bone & Joint Research
Vol. 4, Issue 6 | Pages 99 - 104
1 Jun 2015
Savaridas T Wallace RJ Dawson S Simpson AHRW

Objectives

There remains conflicting evidence regarding cortical bone strength following bisphosphonate therapy. As part of a study to assess the effects of bisphosphonate treatment on the healing of rat tibial fractures, the mechanical properties and radiological density of the uninjured contralateral tibia was assessed.

Methods

Skeletally mature aged rats were used. A total of 14 rats received 1µg/kg ibandronate (iban) daily and 17 rats received 1 ml 0.9% sodium chloride (control) daily. Stress at failure and toughness of the tibial diaphysis were calculated following four-point bending tests.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 3 | Pages 363 - 368
1 May 1996
Hamer AJ Strachan JR Black MM Ibbotson CJ Stockley I Elson RA

There have been conflicting reports on the effects of gamma irradiation on the material properties of cortical allograft bone. To investigate changes which result from the method of preparation, test samples must be produced with similar mechanical properties to minimise variations other than those resulting from treatment.

We describe a new method for the comparative measurement of bone strength using standard bone samples. We used 233 samples from six cadavers to study the effects of irradiation at a standard dose (28 kGy) alone and combined with deep freezing. We also investigated the effects of varying the dose from 6.8 to 60 kGy (n = 132).

None of the treatments had any effect on the elastic behaviour of the samples, but there was a reduction in strength to 64% of control values (p < 0.01) after irradiation with 28 kGy. There was also a dose-dependent reduction in strength and in the ability of the samples to absorb work before failure

We suggest that irradiation may cause an alteration in the bone matrix of allograft bone, but provided it is used in situations in which loading is within its elastic region, then failure should not occur.


The Bone & Joint Journal
Vol. 100-B, Issue 5 | Pages 603 - 609
1 May 2018
Schnetzke M Rick S Raiss P Walch G Loew M

Aims. The aim of this study was to evaluate the clinical and radiological outcome of using an anatomical short-stem shoulder prosthesis to treat primary osteoarthritis of the glenohumeral joint. Patients and Methods. A total of 66 patients (67 shoulders) with a mean age of 76 years (63 to 92) were available for clinical and radiological follow-up at two different timepoints (T1, mean 2.6 years, . sd. 0.5; T2, mean 5.3 years,. sd. 0.7). Postoperative radiographs were analyzed for stem angle, cortical contact, and filling ratio of the stem. Follow-up radiographs were analyzed for timing and location of bone adaptation (cortical bone narrowing, osteopenia, spot welds, and condensation lines). The bone adaptation was classified as low (between zero and three features of bone remodelling around the humeral stem) or high (four or more features). Results. The mean Constant score improved significantly from 28.5 (. sd. 11.6) preoperatively to 75.5 (. sd. 8.5) at T1 (p < 0.001) and remained stable over time (T2: 76.6, . sd. 10.2). No stem loosening was seen. High bone adaptation was present in 42% of shoulders at T1, with a slight decrease to 37% at T2. Cortical bone narrowing and osteopenia in the region of the calcar decreased from 76% to 66% between T1 and T2. Patients with high bone adaptation had a significantly higher mean filling ratio of the stem at the metaphysis (0.60, . sd. 0.05 vs 0.55, . sd. 0.06; p = 0.003) and at the diaphysis (0.65 . sd. 0.05 vs 0.60 . sd. 0.05; p = 0.007). Cortical contact of the stem was also associated with high bone adaptation (14/25 shoulders, p = 0.001). The clinical outcome was not influenced by the radiological changes. Conclusion. Total shoulder arthroplasty using a short-stem humeral component resulted in good clinical outcomes with no evidence of loosening. However, approximately 40% of the shoulders developed substantial bone loss in the proximal humerus at between four and seven years of follow-up. Cite this article: Bone Joint J 2018;100-B:603–9


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 985 - 992
1 Sep 2023
Arshad Z Haq II Bhatia M

Aims

This scoping review aims to identify patient-related factors associated with a poorer outcome following total ankle arthroplasty (TAA).

Methods

A scoping review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A computer-based literature search was performed in PubMed, Embase, Cochrane trials, and Web of Science. Two reviewers independently performed title/abstract and full-text screening according to predetermined selection criteria. English-language original research studies reporting patient-related factors associated with a poorer outcome following TAA were included. Outcomes were defined as patient-reported outcome measures (PROMs), perioperative complications, and failure.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 944 - 952
25 Oct 2024
Deveza L El Amine MA Becker AS Nolan J Hwang S Hameed M Vaynrub M

Aims

Treatment of high-grade limb bone sarcoma that invades a joint requires en bloc extra-articular excision. MRI can demonstrate joint invasion but is frequently inconclusive, and its predictive value is unknown. We evaluated the diagnostic accuracy of direct and indirect radiological signs of intra-articular tumour extension and the performance characteristics of MRI findings of intra-articular tumour extension.

Methods

We performed a retrospective case-control study of patients who underwent extra-articular excision for sarcoma of the knee, hip, or shoulder from 1 June 2000 to 1 November 2020. Radiologists blinded to the pathology results evaluated preoperative MRI for three direct signs of joint invasion (capsular disruption, cortical breach, cartilage invasion) and indirect signs (e.g. joint effusion, synovial thickening). The discriminatory ability of MRI to detect intra-articular tumour extension was determined by receiver operating characteristic analysis.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 580 - 589
20 Sep 2023
Dai X Liu B Hou Q Dai Q Wang D Xie B Sun Y Wang B

Aims

The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model.

Methods

In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties.


Bone & Joint Research
Vol. 14, Issue 1 | Pages 5 - 15
1 Jan 2025
Tanveer M Klein K von Rechenberg B Darwiche S Dailey HL

Aims

The “2 to 10% strain rule” for fracture healing has been widely interpreted to mean that interfragmentary strain greater than 10% predisposes a fracture to nonunion. This interpretation focuses on the gap-closing strain (axial micromotion divided by gap size), ignoring the region around the gap where osteogenesis typically initiates. The aim of this study was to measure gap-closing and 3D interfragmentary strains in plated ovine osteotomies and associate local strain conditions with callus mineralization.

Methods

MicroCT scans of eight female sheep with plated mid-shaft tibial osteotomies were used to create image-based finite element models. Virtual mechanical testing was used to compute postoperative gap-closing and 3D continuum strains representing compression (volumetric strain) and shear deformation (distortional strain). Callus mineralization was measured in zones in and around the osteotomy gap.


Bone & Joint Research
Vol. 11, Issue 2 | Pages 112 - 120
16 Feb 2022
Vittrup SØ Hanberg P Knudsen MB Tøstesen SK Kipp JO Hansen J Jørgensen NP Stilling M Bue M

Aims

Prompt and sufficient broad-spectrum empirical antibiotic treatment is key to preventing infection following open tibial fractures. Succeeding co-administration, we dynamically assessed the time for which vancomycin and meropenem concentrations were above relevant epidemiological cut-off (ECOFF) minimal inhibitory concentrations (T > MIC) in tibial compartments for the bacteria most frequently encountered in open fractures. Low and high MIC targets were applied: 1 and 4 µg/ml for vancomycin, and 0.125 and 2 µg/ml for meropenem.

Methods

Eight pigs received a single dose of 1,000 mg vancomycin and 1,000 mg meropenem simultaneously over 100 minutes and 10 minutes, respectively. Microdialysis catheters were placed for sampling over eight hours in tibial cancellous bone, cortical bone, and adjacent subcutaneous adipose tissue. Venous blood samples were collected as references.


Bone & Joint Research
Vol. 11, Issue 4 | Pages 189 - 199
13 Apr 2022
Yang Y Li Y Pan Q Bai S Wang H Pan X Ling K Li G

Aims

Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remains a challenge. A novel surgical technique named ‘tibial cortex transverse transport’ (TTT) has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In the present study, we explored the potential biological mechanisms of TTT surgery using various techniques in a rat TTT animal model.

Methods

A novel rat model of TTT was established with a designed external fixator, and effects on wound healing were investigated. Laser speckle perfusion imaging, vessel perfusion, histology, and immunohistochemistry were used to evaluate the wound healing processes.


Bone & Joint Research
Vol. 10, Issue 12 | Pages 840 - 843
15 Dec 2021
Al-Hourani K Tsang SJ Simpson AHRW


Bone & Joint Research
Vol. 11, Issue 7 | Pages 484 - 493
13 Jul 2022
Hayer S Niederreiter B Kalkgruber M Wanic K Maißner J Smolen JS Aletaha D Blüml S Redlich K

Aims

Insufficient treatment response in rheumatoid arthritis (RA) patients requires novel treatment strategies to halt disease progression. The potential benefit of combination of cytokine-inhibitors in RA is still unclear and needs further investigation. To explore the impact of combined deficiency of two major cytokines, namely interleukin (IL)-1 and IL-6, in this study double deficient mice for IL-1αβ and IL-6 were investigated in different tumour necrosis factor (TNF)-driven inflammatory bone disorders, namely peripheral arthritis and sacroiliitis, as well as systemic bone loss.

Methods

Disease course, histopathological features of arthritis, and micro-CT (µCT) bone analysis of local and systemic bone loss were assessed in 15-week-old IL1-/-IL6-/-hTNFtg in comparison to IL1-/-hTNFtg, IL6-/-hTNFtg, and hTNFtg mice. µCT bone analysis of single deficient and wild-type mice was also performed.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 528 - 540
1 Aug 2022
Dong W Postlethwaite BC Wheller PA Brand D Jiao Y Li W Myers LK Gu W

Aims

This study investigated the effects of β-caryophyllene (BCP) on protecting bone from vitamin D deficiency in mice fed on a diet either lacking (D-) or containing (D+) vitamin D.

Methods

A total of 40 female mice were assigned to four treatment groups (n = 10/group): D+ diet with propylene glycol control, D+ diet with BCP, D-deficient diet with control, and D-deficient diet with BCP. The D+ diet is a commercial basal diet, while the D-deficient diet contains 0.47% calcium, 0.3% phosphorus, and no vitamin D. All the mice were housed in conditions without ultraviolet light. Bone properties were evaluated by X-ray micro-CT. Serum levels of klotho were measured by enzyme-linked immunosorbent assay.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 413 - 425
1 Jul 2022
Tu C Lai S Huang Z Cai G Zhao K Gao J Wu Z Zhong Z

Aims

Gap junction intercellular communication (GJIC) in osteocytes is impaired by oxidative stress, which is associated with age-related bone loss. Ageing is accompanied by the accumulation of advanced oxidation protein products (AOPPs). However, it is still unknown whether AOPP accumulation is involved in the impairment of osteocytes’ GJIC. This study aims to investigate the effect of AOPP accumulation on osteocytes’ GJIC in aged male mice and its mechanism.

Methods

Changes in AOPP levels, expression of connexin43 (Cx43), osteocyte network, and bone mass were detected in 18-month-old and three-month-old male mice. Cx43 expression, GJIC function, mitochondria membrane potential, reactive oxygen species (ROS) levels, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation were detected in murine osteocyte-like cells (MLOY4 cells) treated with AOPPs. The Cx43 expression, osteocyte network, bone mass, and mechanical properties were detected in three-month-old mice treated with AOPPs for 12 weeks.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 60 - 67
1 Jan 2021
Bendtsen MAF Bue M Hanberg P Slater J Thomassen MB Hansen J Søballe K Öbrink-Hansen K Stilling M

Aims

Flucloxacillin is commonly administered intravenously for perioperative antimicrobial prophylaxis, while oral administration is typical for prophylaxis following smaller traumatic wounds. We assessed the time, for which the free flucloxacillin concentration was maintained above the minimum inhibitory concentration (fT > MIC) for methicillin-susceptible Staphylococcus aureus in soft and bone tissue, after intravenous and oral administration, using microdialysis in a porcine model.

Methods

A total of 16 pigs were randomly allocated to either intravenous (Group IV) or oral (Group PO) flucloxacillin 1 g every six hours during a 24-hour period. Microdialysis was used for sampling in cancellous and cortical bone, subcutaneous tissue, and the knee joint. In addition, plasma was sampled. The flucloxacillin fT > MIC was evaluated using a low MIC target (0.5 μg/ml) and a high MIC target (2.0 μg/ml).


Aims

There are concerns regarding nail/medullary canal mismatch and initial stability after cephalomedullary nailing in unstable pertrochanteric fractures. This study aimed to investigate the effect of an additional anteroposterior blocking screw on fixation stability in unstable pertrochanteric fracture models with a nail/medullary canal mismatch after short cephalomedullary nail (CMN) fixation.

Methods

Eight finite element models (FEMs), comprising four different femoral diameters, with and without blocking screws, were constructed, and unstable intertrochanteric fractures fixed with short CMNs were reproduced in all FEMs. Micromotions of distal shaft fragment related to proximal fragment, and stress concentrations at the nail construct were measured.


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 122 - 128
1 Jul 2021
Tibbo ME Limberg AK Gausden EB Huang P Perry KI Yuan BJ Berry DJ Abdel MP

Aims

The prevalence of ipsilateral total hip arthroplasty (THA) and total knee arthroplasty (TKA) is rising in concert with life expectancy, putting more patients at risk for interprosthetic femur fractures (IPFFs). Our study aimed to assess treatment methodologies, implant survivorship, and IPFF clinical outcomes.

Methods

A total of 76 patients treated for an IPFF from February 1985 to April 2018 were reviewed. Prior to fracture, at the hip/knee sites respectively, 46 femora had primary/primary, 21 had revision/primary, three had primary/revision, and six had revision/revision components. Mean age and BMI were 74 years (33 to 99) and 30 kg/m2 (21 to 46), respectively. Mean follow-up after fracture treatment was seven years (2 to 24).


Bone & Joint Research
Vol. 10, Issue 4 | Pages 250 - 258
1 Apr 2021
Kwak D Bang S Lee S Park J Yoo J

Aims

There are concerns regarding initial stability and early periprosthetic fractures in cementless hip arthroplasty using short stems. This study aimed to investigate stress on the cortical bone around the stem and micromotions between the stem and cortical bone according to femoral stem length and positioning.

Methods

In total, 12 femoral finite element models (FEMs) were constructed and tested in walking and stair-climbing. Femoral stems of three different lengths and two different positions were simulated, assuming press-fit fixation within each FEM. Stress on the cortical bone and micromotions between the stem and bone were measured in each condition.


Bone & Joint Open
Vol. 1, Issue 9 | Pages 512 - 519
1 Sep 2020
Monzem S Ballester RY Javaheri B Poulet B Sônego DA Pitsillides AA Souza RL

Aims

The processes linking long-term bisphosphonate treatment to atypical fracture remain elusive. To establish a means of exploring this link, we have examined how long-term bisphosphonate treatment with prior ovariectomy modifies femur fracture behaviour and tibia mass and shape in murine bones.

Methods

Three groups (seven per group) of 12-week-old mice were: 1) ovariectomized and 20 weeks thereafter treated weekly for 24 weeks with 100 μm/kg subcutaneous ibandronate (OVX+IBN); 2) ovariectomized (OVX); or 3) sham-operated (SHAM). Quantitative fracture analysis generated biomechanical properties for the femoral neck. Tibiae were microCT scanned and trabecular (proximal metaphysis) and cortical parameters along almost its whole length measured.


Bone & Joint Research
Vol. 9, Issue 8 | Pages 493 - 500
1 Aug 2020
Fletcher JWA Zderic I Gueorguiev B Richards RG Gill HS Whitehouse MR Preatoni E

Aims

To devise a method to quantify and optimize tightness when inserting cortical screws, based on bone characterization and screw geometry.

Methods

Cortical human cadaveric diaphyseal tibiae screw holes (n = 20) underwent destructive testing to firstly establish the relationship between cortical thickness and experimental stripping torque (Tstr), and secondly to calibrate an equation to predict Tstr. Using the equation’s predictions, 3.5 mm screws were inserted (n = 66) to targeted torques representing 40% to 100% of Tstr, with recording of compression generated during tightening. Once the target torque had been achieved, immediate pullout testing was performed.


Bone & Joint Research
Vol. 9, Issue 4 | Pages 162 - 172
1 Apr 2020
Xie S Conlisk N Hamilton D Scott C Burnett R Pankaj P

Aims

Metaphyseal tritanium cones can be used to manage the tibial bone loss commonly encountered at revision total knee arthroplasty (rTKA). Tibial stems provide additional fixation and are generally used in combination with cones. The aim of this study was to examine the role of the stems in the overall stability of tibial implants when metaphyseal cones are used for rTKA.

Methods

This computational study investigates whether stems are required to augment metaphyseal cones at rTKA. Three cemented stem scenarios (no stem, 50 mm stem, and 100 mm stem) were investigated with 10 mm-deep uncontained posterior and medial tibial defects using four loading scenarios designed to mimic activities of daily living.


Bone & Joint Research
Vol. 8, Issue 2 | Pages 55 - 64
1 Feb 2019
Danese I Pankaj P Scott CEH

Objectives

Elevated proximal tibial bone strain may cause unexplained pain, an important cause of unicompartmental knee arthroplasty (UKA) revision. This study investigates the effect of tibial component alignment in metal-backed (MB) and all-polyethylene (AP) fixed-bearing medial UKAs on bone strain, using an experimentally validated finite element model (FEM).

Methods

A previously experimentally validated FEM of a composite tibia implanted with a cemented fixed-bearing UKA (MB and AP) was used. Standard alignment (medial proximal tibial angle 90°, 6° posterior slope), coronal malalignment (3°, 5°, 10° varus; 3°, 5° valgus), and sagittal malalignment (0°, 3°, 6°, 9°, 12°) were analyzed. The primary outcome measure was the volume of compressively overstrained cancellous bone (VOCB) < -3000 µε. The secondary outcome measure was maximum von Mises stress in cortical bone (MSCB) over a medial region of interest.


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 779 - 786
1 Jul 2019
Lamb JN Baetz J Messer-Hannemann P Adekanmbi I van Duren BH Redmond A West RM Morlock MM Pandit HG

Aims

The aim of this study was to estimate the 90-day risk of revision for periprosthetic femoral fracture associated with design features of cementless femoral stems, and to investigate the effect of a collar on this risk using a biomechanical in vitro model.

Materials and Methods

A total of 337 647 primary total hip arthroplasties (THAs) from the United Kingdom National Joint Registry (NJR) were included in a multivariable survival and regression analysis to identify the adjusted hazard of revision for periprosthetic fracture following primary THA using a cementless stem. The effect of a collar in cementless THA on this risk was evaluated in an in vitro model using paired fresh frozen cadaveric femora.


Bone & Joint 360
Vol. 7, Issue 1 | Pages 22 - 24
1 Feb 2018


Bone & Joint Research
Vol. 6, Issue 1 | Pages 22 - 30
1 Jan 2017
Scott CEH Eaton MJ Nutton RW Wade FA Evans SL Pankaj P

Objectives

Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE).

Materials and Methods

A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 105 - 110
1 Jan 2018
Abar O Dharmar S Tang SY

Objectives

Advanced glycation end-products (AGEs) are a post-translational modification of collagen that form spontaneously in the skeletal matrix due to the presence of reducing sugars, such as glucose. The accumulation of AGEs leads to collagen cross-linking, which adversely affects bone quality and has been shown to play a major role in fracture risk. Thus, intervening in the formation and accumulation of AGEs may be a viable means of protecting bone quality.

Methods

An in vitro model was used to examine the efficacy of two AGE-inhibitors, aminoguanidine (AG) and pyridoxamine (PM), on ageing human cortical bone. Mid-diaphyseal tibial cortical bone segments were obtained from female cadavers (n = 20, age range: 57 years to 97 years) and randomly subjected to one of four treatments: control; glucose only; glucose and AG; or glucose and PM. Following treatment, each specimen underwent mechanical testing under physiological conditions via reference point indentation, and AGEs were quantified by fluorescence.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 148 - 156
1 Feb 2018
Pinheiro M Dobson CA Perry D Fagan MJ

Objectives

Legg–Calvé–Perthes’ disease (LCP) is an idiopathic osteonecrosis of the femoral head that is most common in children between four and eight years old. The factors that lead to the onset of LCP are still unclear; however, it is believed that interruption of the blood supply to the developing epiphysis is an important factor in the development of the condition.

Methods

Finite element analysis modelling of the blood supply to the juvenile epiphysis was investigated to understand under which circumstances the blood vessels supplying the femoral epiphysis could become obstructed. The identification of these conditions is likely to be important in understanding the biomechanics of LCP.


Bone & Joint Research
Vol. 6, Issue 7 | Pages 433 - 438
1 Jul 2017
Pan M Chai L Xue F Ding L Tang G Lv B

Objectives

The aim of this study was to compare the biomechanical stability and clinical outcome of external fixator combined with limited internal fixation (EFLIF) and open reduction and internal fixation (ORIF) in treating Sanders type 2 calcaneal fractures.

Methods

Two types of fixation systems were selected for finite element analysis and a dual cohort study. Two fixation systems were simulated to fix the fracture in a finite element model. The relative displacement and stress distribution were analysed and compared. A total of 71 consecutive patients with closed Sanders type 2 calcaneal fractures were enrolled and divided into two groups according to the treatment to which they chose: the EFLIF group and the ORIF group. The radiological and clinical outcomes were evaluated and compared.


Bone & Joint Research
Vol. 5, Issue 12 | Pages 610 - 618
1 Dec 2016
Abubakar AA Noordin MM Azmi TI Kaka U Loqman MY

In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine.

Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2.


The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1503 - 1509
1 Nov 2014
Ritter MA Davis KE Small SR Merchun JG Farris A

The relationship between post-operative bone density and subsequent failure of total knee replacement (TKR) is not known. This retrospective study aimed to determine the relationship between bone density and failure, both overall and according to failure mechanism. All 54 aseptic failures occurring in 50 patients from 7760 consecutive primary cemented TKRs between 1983 and 2004 were matched with non-failing TKRs, and 47 failures in 44 patients involved tibial failures with the matching characteristics of age (65.1 for failed and 69.8 for non-failed), gender (70.2% female), diagnosis (93.6% OA), date of operation, bilaterality, pre-operative alignment (0.4 and 0.3 respectively), and body mass index (30.2 and 30.0 respectively). In each case, the density of bone beneath the tibial component was assessed at each follow-up interval using standardised, calibrated radiographs. Failing knees were compared with controls both overall and, as a subgroup analysis, by failure mechanism. Knees were compared with controls using univariable linear regression.

Significant and continuous elevation in tibial density was found in knees that eventually failed by medial collapse (p < 0.001) and progressive radiolucency (p < 0.001) compared with controls, particularly in the medial region of the tibia. Knees failing due to ligamentous instability demonstrated an initial decline in density (p = 0.0152) followed by a non-decreasing density over time (p = 0.034 for equivalence). Non-failing knees reported a decline in density similar to that reported previously using dual-energy x-ray absorptiometry (DEXA). Differences between failing and non-failing knees were observable as early as two months following surgery. This tool may be used to identify patients at risk of failure following TKR, but more validation work is needed.

Cite this article: Bone Joint J 2014;96-B:1503–9.


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 677 - 683
1 May 2014
Greenberg A Berenstein Weyel T Sosna J Applbaum J Peyser A

Osteoid osteoma is treated primarily by radiofrequency (RF) ablation. However, there is little information about the distribution of heat in bone during the procedure and its safety. We constructed a model of osteoid osteoma to assess the distribution of heat in bone and to define the margins of safety for ablation. Cavities were drilled in cadaver bovine bones and filled with a liver homogenate to simulate the tumour matrix. Temperature-sensing probes were placed in the bone in a radial fashion away from the cavities. RF ablation was performed 107 times in tumours < 10 mm in diameter (72 of which were in cortical bone, 35 in cancellous bone), and 41 times in cortical bone with models > 10 mm in diameter. Significantly higher temperatures were found in cancellous bone than in cortical bone (p <  0.05). For lesions up to 10 mm in diameter, in both bone types, the temperature varied directly with the size of the tumour (p < 0.05), and inversely with the distance from it. Tumours of > 10 mm in diameter showed a trend similar to those of smaller lesions. No temperature rise was seen beyond 12 mm from the edge of a cortical tumour of any size. Formulae were developed to predict the expected temperature in the bone during ablation.

Cite this article: Bone Joint J 2014; 96-B:677–83


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1339 - 1347
1 Oct 2013
Scott CEH Eaton MJ Nutton RW Wade FA Pankaj P Evans SL

As many as 25% to 40% of unicompartmental knee replacement (UKR) revisions are performed for pain, a possible cause of which is proximal tibial strain. The aim of this study was to examine the effect of UKR implant design and material on cortical and cancellous proximal tibial strain in a synthetic bone model. Composite Sawbone tibiae were implanted with cemented UKR components of different designs, either all-polyethylene or metal-backed. The tibiae were subsequently loaded in 500 N increments to 2500 N, unloading between increments. Cortical surface strain was measured using a digital image correlation technique. Cancellous damage was measured using acoustic emission, an engineering technique that detects sonic waves (‘hits’) produced when damage occurs in material.

Anteromedial cortical surface strain showed significant differences between implants at 1500 N and 2500 N in the proximal 10 mm only (p < 0.001), with relative strain shielding in metal-backed implants. Acoustic emission showed significant differences in cancellous bone damage between implants at all loads (p = 0.001). All-polyethylene implants displayed 16.6 times the total number of cumulative acoustic emission hits as controls. All-polyethylene implants also displayed more hits than controls at all loads (p < 0.001), more than metal-backed implants at loads ≥ 1500 N (p < 0.001), and greater acoustic emission activity on unloading than controls (p = 0.01), reflecting a lack of implant stiffness. All-polyethylene implants were associated with a significant increase in damage at the microscopic level compared with metal-backed implants, even at low loads. All-polyethylene implants should be used with caution in patients who are likely to impose large loads across their knee joint.

Cite this article: Bone Joint J 2013;95-B:1339–47.


Bone & Joint Research
Vol. 1, Issue 2 | Pages 13 - 19
1 Feb 2012
Smith MD Baldassarri S Anez-Bustillos L Tseng A Entezari V Zurakowski D Snyder BD Nazarian A

Objectives

This study aims to assess the correlation of CT-based structural rigidity analysis with mechanically determined axial rigidity in normal and metabolically diseased rat bone.

Methods

A total of 30 rats were divided equally into normal, ovariectomized, and partially nephrectomized groups. Cortical and trabecular bone segments from each animal underwent micro-CT to assess their average and minimum axial rigidities using structural rigidity analysis. Following imaging, all specimens were subjected to uniaxial compression and assessment of mechanically-derived axial rigidity.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1240 - 1246
1 Sep 2011
Melis B DeFranco M Lädermann A Molé D Favard L Nérot C Maynou C Walch G

Radiological changes and differences between cemented and uncemented components of Grammont reverse shoulder arthroplasties (DePuy) were analysed at a mean follow-up of 9.6 years (8 to 12). Of 122 reverse shoulder arthroplasties implanted in five shoulder centres between 1993 and 2000, a total of 68 (65 patients) were available for study. The indications for reversed shoulder arthroplasty were cuff tear arthropathy in 48 shoulders, revision of shoulder prostheses of various types in 11 and massive cuff tear in nine. The development of scapular notching, bony scapular spur formation, heterotopic ossification, glenoid and humeral radiolucencies, stem subsidence, radiological signs of stress shielding and resorption of the tuberosities were assessed on standardised true anteroposterior and axillary radiographs.

A scapular notch was observed in 60 shoulders (88%) and was associated with the superolateral approach (p = 0.009). Glenoid radiolucency was present in 11 (16%), bony scapular spur and/or ossifications in 51 (75%), and subsidence of the stem and humeral radiolucency in more than three zones were present in three (8.8%) and in four (11.8%) of 34 cemented components, respectively, and in one (2.9%) and two (5.9%) of 34 uncemented components, respectively. Radiological signs of stress shielding were significantly more frequent with uncemented components (p < 0.001), as was resorption of the greater (p < 0.001) and lesser tuberosities (p = 0.009).


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1061 - 1065
1 Aug 2010
Cho W Cho SK Wu C

There are three basic concepts that are important to the biomechanics of pedicle screw-based instrumentation. First, the outer diameter of the screw determines pullout strength, while the inner diameter determines fatigue strength. Secondly, when inserting a pedicle screw, the dorsal cortex of the spine should not be violated and the screws on each side should converge and be of good length. Thirdly, fixation can be augmented in cases of severe osteoporosis or revision.

A trajectory parallel or caudal to the superior endplate can minimise breakage of the screw from repeated axial loading. Straight insertion of the pedicle screw in the mid-sagittal plane provides the strongest stability.

Rotational stability can be improved by adding transverse connectors. The indications for their use include anterior column instability, and the correction of rotational deformity.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1495 - 1498
1 Nov 2008
Shen J Tong P Qu H

This randomised study compared outcomes in patients with displaced fractures of the clavicle treated by open reduction and fixation by a reconstruction plate which was placed either superiorly or three-dimensionally. Between 2003 and 2006, 133 consecutive patients with a mean age of 44.2 years (18 to 60) with displaced midshaft fractures of the clavicle were allocated randomly to a three-dimensional (3D) (67 patients) or superior group (66). Outcome measures included the peri-operative outcome index, delayed union, revision surgery and symptoms beyond 16 weeks. CT was used to reconstruct an image of each affected clavicle and Photoshop 7.0 software employed to calculate the percentage of the clavicular cortical area in the sagittal plane. The patients were reviewed clinically and radiographically at four and 12 months after the operation. The superior plate group had a higher rate of delayed union and had more symptomatic patients than the 3D group (p < 0.05). The percentage comparisons of cortical bone area showed that cortical bone in the superior distal segment is thicker than in the inferior segment, it is also thicker in the anterior mid-section than in the posterior (p < 0.05).

If fixation of midshaft fractures of the clavicle with a plate is indicated, a 3D reconstruction plate is better than one placed superiorly, because it is consistent with the stress distribution and shape of the clavicle.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 320 - 325
1 Feb 2010
Wang G Yang H Li M Lu S Chen X Cai X

In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study.

The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 635 - 639
1 May 2005
Ikeuchi M Kawakami T Kitaoka K Okanoue Y Tani T

We describe a new technique of reconstruction of the deficient acetabulum in cementless total hip arthroplasty. The outer iliac table just above the deficient acetabulum is osteotomised and slid downwards. We have termed this an iliac sliding graft. Between October 1997 and November 2001, cementless total hip arthroplasty with an iliac sliding graft was performed on 19 patients (19 hips) with acetabular dysplasia. The mean follow-up was 3.4 years (2 to 6).

The mean pre-operative Harris hip score was 45.1 which improved significantly to 85.3 at the time of the final follow-up. No patient had post-operative abductor dysfunction. Incorporation of the graft was seen after two to three months in all patients. Resorption of the graft and radiolucencies were infrequent. This technique is a useful alternative to femoral head autografting when the patient’s own femoral head cannot be used.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1110 - 1115
1 Aug 2006
Ong KL Kurtz SM Manley MT Rushton N Mohammed NA Field RE

The effects of the method of fixation and interface conditions on the biomechanics of the femoral component of the Birmingham hip resurfacing arthroplasty were examined using a highly detailed three-dimensional computer model of the hip. Stresses and strains in the proximal femur were compared for the natural femur and for the femur resurfaced with the Birmingham hip resurfacing. A comparison of cemented versus uncemented fixation showed no advantage of either with regard to bone loading. When the Birmingham hip resurfacing femoral component was fixed to bone, proximal femoral stresses and strains were non-physiological. Bone resorption was predicted in the inferomedial and superolateral bone within the Birmingham hip resurfacing shell. Resorption was limited to the superolateral region when the stem was not fixed. The increased bone strain observed adjacent to the distal stem should stimulate an increase in bone density at that location. The remodelling of bone seen during revision of failed Birmingham hip resurfacing implants appears to be consistent with the predictions of our finite element analysis.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1561 - 1567
1 Nov 2005
Janssen D Aquarius R Stolk J Verdonschot N

The Capital Hip implant was a Charnley-based system which included a flanged and a roundback stem, both of which were available in stainless steel and titanium. The system was withdrawn from the market because of its inferior performance. However, all four of the designs did not produce poor rates of survival. Using a simulated-based, finite-element analysis, we have analysed the Capital Hip system. Our aim was to investigate whether our simulation was able to detect differences which could account for the varying survival between the Capital Hip designs, thereby further validating the simulation.

We created finite-element models of reconstructions with the flanged and roundback Capital Hips. A loading history was applied representing normal walking and stair-climbing, while we monitored the formation of fatigue cracks in the cement.

Corresponding to the clinical findings, our simulation was able to detect the negative effects of the titanium material and the flanged design in the Capital Hip system. Although improvements could be made by including the effect of the roughness of the surface of the stem, our study increased the value of the model as a predictive tool for determining failure of an implant.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 593 - 603
1 May 2005
Harvey A Thomas NP Amis AA