Advertisement for orthosearch.org.uk
Results 1 - 50 of 300
Results per page:

Aims. Treatment outcomes for methicillin-resistant Staphylococcus aureus (MRSA) periprosthetic joint infection (PJI) using systemic vancomycin and antibacterial cement spacers during two-stage revision arthroplasty remain unsatisfactory. This study explored the efficacy and safety of intra-articular vancomycin injections for PJI control after debridement and cement spacer implantation in a rat model. Methods. Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation. Results. Rats receiving intra-articular vancomycin showed the best outcomes among the four treatment groups, with negative bacterial cultures, increased weight gain, increased capacity for weightbearing activities, increased residual bone volume preservation, and reduced inflammatory reactions in the joint tissues, indicating MRSA eradication in the knee. The vancomycin-spacer and/or systemic vancomycin failed to eliminate the MRSA infections following a two-week antibiotic course. Serum vancomycin levels did not reach nephrotoxic levels in any group. Mild renal histopathological changes, without changes in serum creatinine levels, were observed in the intraperitoneal vancomycin group compared with the intra-articular vancomycin group, but no changes in hepatic structure or serum alanine aminotransferase or aspartate aminotransferase levels were observed. No local complications were observed, such as sinus tract or non-healing surgical incisions. Conclusion. Intra-articular vancomycin injection was effective and safe for PJI control following debridement and spacer implantation in a rat model during two-stage revision arthroplasties, with better outcomes than systemic vancomycin administration. Cite this article: Bone Joint Res 2022;11(6):371–385


Bone & Joint Research
Vol. 11, Issue 2 | Pages 112 - 120
16 Feb 2022
Vittrup SØ Hanberg P Knudsen MB Tøstesen SK Kipp JO Hansen J Jørgensen NP Stilling M Bue M

Aims. Prompt and sufficient broad-spectrum empirical antibiotic treatment is key to preventing infection following open tibial fractures. Succeeding co-administration, we dynamically assessed the time for which vancomycin and meropenem concentrations were above relevant epidemiological cut-off (ECOFF) minimal inhibitory concentrations (T > MIC) in tibial compartments for the bacteria most frequently encountered in open fractures. Low and high MIC targets were applied: 1 and 4 µg/ml for vancomycin, and 0.125 and 2 µg/ml for meropenem. Methods. Eight pigs received a single dose of 1,000 mg vancomycin and 1,000 mg meropenem simultaneously over 100 minutes and 10 minutes, respectively. Microdialysis catheters were placed for sampling over eight hours in tibial cancellous bone, cortical bone, and adjacent subcutaneous adipose tissue. Venous blood samples were collected as references. Results. Across the targeted ECOFF values, vancomycin displayed longer T > MIC in all the investigated compartments in comparison to meropenem. For both drugs, cortical bone exhibited the shortest T > MIC. For the low MIC targets and across compartments, mean T > MIC ranged between 208 and 449 minutes (46% to 100%) for vancomycin and between 189 and 406 minutes (42% to 90%) for meropenem. For the high MIC targets, mean T > MIC ranged between 30 and 446 minutes (7% to 99%) for vancomycin and between 45 and 181 minutes (10% to 40%) for meropenem. Conclusion. The differences in the T > MIC between the low and high targets illustrate how the interpretation of these results is highly susceptible to the defined MIC target. To encompass any trauma, contamination, or individual tissue differences, a more aggressive dosing approach may be considered to achieve longer T > MIC in all the exposed tissues, and thereby lower the risk of acquiring an infection after open tibial fractures. Cite this article: Bone Joint Res 2022;11(2):112–120


Bone & Joint Research
Vol. 11, Issue 3 | Pages 143 - 151
1 Mar 2022
Goetz J Keyssner V Hanses F Greimel F Leiß F Schwarz T Springorum H Grifka J Schaumburger J

Aims. Periprosthetic joint infections (PJIs) are rare, but represent a great burden for the patient. In addition, the incidence of methicillin-resistant Staphylococcus aureus (MRSA) is increasing. The aim of this rat experiment was therefore to compare the antibiotics commonly used in the treatment of PJIs caused by MRSA. Methods. For this purpose, sterilized steel implants were implanted into the femur of 77 rats. The metal devices were inoculated with suspensions of two different MRSA strains. The animals were divided into groups and treated with vancomycin, linezolid, cotrimoxazole, or rifampin as monotherapy, or with combination of antibiotics over a period of 14 days. After a two-day antibiotic-free interval, the implant was explanted, and bone, muscle, and periarticular tissue were microbiologically analyzed. Results. Vancomycin and linezolid were able to significantly (p < 0.05) reduce the MRSA bacterial count at implants. No significant effect was found at the bone. Rifampin was the only monotherapy that significantly reduced the bacterial count on implant and bone. The combination with vancomycin or linezolid showed significant efficacy. Treatment with cotrimoxazole alone did not achieve a significant bacterial count reduction. The combination of linezolid plus rifampin was significantly more effective on implant and bone than the control group in both trials. Conclusion. Although rifampicin is effective as a monotherapy, it should not be used because of the high rate of resistance development. Our animal experiments showed the great importance of combination antibiotic therapies. In the future, investigations with higher case numbers, varied bacterial concentrations, and changes in individual drug dosages will be necessary to be able to draw an exact comparison, possibly within a clinical trial. Cite this article: Bone Joint Res 2022;11(3):143–151


Bone & Joint Research
Vol. 11, Issue 11 | Pages 787 - 802
1 Nov 2022
Sebastian S Tandberg F Liu Y Raina DB Tägil M Collin M Lidgren L

Aims. There is a lack of biomaterial-based carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotics for bone infections. RIF is also known for causing rapid development of antibiotic resistance when given as monotherapy. This in vitro study evaluated a clinically used biphasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN). Methods. The CaS/HA composites containing RIF/GEN/VAN, either alone or in combination, were first prepared and their injectability, setting time, and antibiotic elution profiles were assessed. Using a continuous disk diffusion assay, the antibacterial behaviour of the material was tested on both planktonic and biofilm-embedded forms of standard and clinical strains of Staphylococcus aureus for 28 days. Development of bacterial resistance to RIF was determined by exposing the biofilm-embedded bacteria continuously to released fractions of antibiotics from CaS/HA-antibiotic composites. Results. Following the addition of RIF to CaS/HA-VAN/GEN, adequate injectability and setting of the CaS/HA composites were noted. Sustained release of RIF above the minimum inhibitory concentrations of S. aureus was observed until study endpoint (day 35). Only combinations of CaS/HA-VAN/GEN + RIF exhibited antibacterial and antibiofilm effects yielding no viable bacteria at study endpoint. The S. aureus strains developed resistance to RIF when biofilms were subjected to CaS/HA-RIF alone but not with CaS/HA-VAN/GEN + RIF. Conclusion. Our in vitro results indicate that biphasic CaS/HA loaded with VAN or GEN could be used as a carrier for RIF for local delivery in clinically demanding bone infections. Cite this article: Bone Joint Res 2022;11(11):787–802


Aims

The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders.

Methods

Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 103 or 1 × 106 colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 103 or 1 × 106 CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash.


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1702 - 1708
1 Nov 2021
Lawrie CM Kazarian GS Barrack T Nunley RM Barrack RL

Aims. Intra-articular administration of antibiotics during primary total knee arthroplasty (TKA) may represent a safe, cost-effective strategy to reduce the risk of acute periprosthetic joint infection (PJI). Vancomycin with an aminoglycoside provides antimicrobial cover for most organisms isolated from acute PJI after TKA. However, the intra-articular doses required to achieve sustained therapeutic intra-articular levels while remaining below toxic serum levels is unknown. The purpose of this study is to determine the intra-articular and serum levels of vancomycin and tobramycin over the first 24 hours postoperatively after intra-articular administration in primary cementless TKA. Methods. A prospective cohort study was performed. Patients were excluded if they had poor renal function, known allergic reaction to vancomycin or tobramycin, received intravenous vancomycin, or were scheduled for same-day discharge. All patients received 600 mg tobramycin and 1 g of vancomycin powder suspended in 25 cc of normal saline and injected into the joint after closure of the arthrotomy. Serum from peripheral venous blood and drain fluid samples were collected at one, four, and 24 hours postoperatively. All concentrations are reported in µg per ml. Results. A total of 22 patients were included in final analysis. At one, four, and 24 hours postoperatively, mean (95% confidence interval (CI)) serum concentrations were 2.4 (0.7 to 4.1), 5.0 (3.1 to 6.9), and 4.8 (2.8 to 6.9) for vancomycin and 4.9 (3.4 to 6.3), 7.0 (5.8 to 8.2), and 1.3 (0.8 to 1.8) for tobramycin; intra-articular concentrations were 1,900.6 (1,492.5 to 2,308.8), 717.9 (485.5 to 950.3), and 162.2 (20.5 to 304.0) for vancomycin and 2,105.3 (1,389.9 to 2,820.6), 403.2 (266.6 to 539.7), and 98.8 (0 to 206.5) for tobramycin. Conclusion. Intra-articular administration of 1 g of vancomycin and 600 mg of tobramycin as a solution after closure of the arthrotomy in primary cementless TKA achieves therapeutic intra-articular concentrations over the first 24 hours postoperatively and does not reach sustained toxic levels in peripheral blood. Cite this article: Bone Joint J 2021;103-B(11):1702–1708


Bone & Joint Research
Vol. 13, Issue 10 | Pages 535 - 545
2 Oct 2024
Zou C Guo W Mu W Wahafu T Li Y Hua L Xu B Cao L

Aims. We aimed to determine the concentrations of synovial vancomycin and meropenem in patients treated by single-stage revision combined with intra-articular infusion following periprosthetic joint infection (PJI), thereby validating this drug delivery approach. Methods. We included 14 patients with PJI as noted in their medical records between November 2021 and August 2022, comprising eight hip and seven knee joint infections, with one patient experiencing bilateral knee infections. The patients underwent single-stage revision surgery, followed by intra-articular infusion of vancomycin and meropenem (50,000 µg/ml). Synovial fluid samples were collected to assess antibiotic concentrations using high-performance liquid chromatography. Results. The peak concentrations of vancomycin and meropenem in the joint cavity were observed at one hour post-injection, with mean values of 14,933.9 µg/ml (SD 10,176.3) and 5,819.1 µg/ml (SD 6,029.8), respectively. The trough concentrations at 24 hours were 5,495.0 µg/ml (SD 2,360.5) for vancomycin and 186.4 µg/ml (SD 254.3) for meropenem. The half-life of vancomycin was 6 hours, while that of meropenem ranged between 2 and 3.5 hours. No significant adverse events related to the antibiotic administration were observed. Conclusion. This method can achieve sustained high antibiotic concentrations within the joint space, exceeding the reported minimum biofilm eradication concentration. Our study highlights the remarkable effectiveness of intra-articular antibiotic infusion in delivering high intra-articular concentrations of antibiotics. The method provided sustained high antibiotic concentrations within the joint cavity, and no severe side-effects were observed. These findings offer evidence to improve clinical treatment strategies. However, further validation is required through studies with larger sample sizes and higher levels of evidence. Cite this article: Bone Joint Res 2024;13(10):535–545


Bone & Joint Research
Vol. 9, Issue 11 | Pages 778 - 788
1 Nov 2020
Xu H Yang J Xie J Huang Z Huang Q Cao G Pei F

Aims. The efficacy and safety of intrawound vancomycin for preventing surgical site infection in primary hip and knee arthroplasty is uncertain. Methods. A systematic review of the literature was conducted, indexed from inception to March 2020 in PubMed, Web of Science, Cochrane Library, Embase, and Google Scholar databases. All studies evaluating the efficacy and/or safety of intrawound vancomycin in patients who underwent primary hip and knee arthroplasty were included. Incidence of periprosthetic joint infection (PJI), superficial infection, aseptic wound complications, acute kidney injury, anaphylactic reaction, and ototoxicity were meta-analyzed. Results were reported as odds ratios (ORs) and 95% confidence intervals (CIs). The quality of included studies was assessed using the risk of bias in non-randomized studies of interventions (ROBINS-I) assessment tool. Results. Nine studies involving 4,607 patients were included. Intrawound vancomycin was associated with lower incidence of PJI (30 patients (1.20%) vs 58 control patients (2.75%); OR 0.44, 95% CI 0.28 to 0.69) and simultaneous acute kidney injury (four patients (0.28%) vs four control patients (0.35%), OR 0.71, 95% CI 0.19 to 2.55). However, it did not reduce risk of superficial infection (four patients (0.67%) vs six control patients (1.60%), OR 0.60, 95% CI 0.17 to 2.12) and was associated with higher incidence of aseptic wound complications (23 patients (2.15%) vs eight in control patients (0.96%), OR 2.39, 95% CI 1.09 to 5.23). Four studies reported no anaphylactic reactions and three studies reported no ototoxicity in any patient group. Conclusion. The current literature suggests that intrawound vancomycin used in primary hip and knee arthroplasty may reduce incidence of PJI, but it may also increase risk of aseptic wound complications. Cite this article: Bone Joint Res 2020;9(11):778–788


Bone & Joint Research
Vol. 8, Issue 2 | Pages 49 - 54
1 Feb 2019
Stravinskas M Nilsson M Vitkauskiene A Tarasevicius S Lidgren L

Objectives. The aim of this study was to analyze drain fluid, blood, and urine simultaneously to follow the long-term release of vancomycin from a biphasic ceramic carrier in major hip surgery. Our hypothesis was that there would be high local vancomycin concentrations during the first week with safe low systemic trough levels and a complete antibiotic release during the first month. Methods. Nine patients (six female, three male; mean age 75.3 years (sd 12.3; 44 to 84)) with trochanteric hip fractures had internal fixations. An injectable ceramic bone substitute, with hydroxyapatite in a calcium sulphate matrix, containing 66 mg of vancomycin per millilitre, was inserted to augment the fixation. The vancomycin elution was followed by simultaneously collecting drain fluid, blood, and urine. Results. The antibiotic concentration in the drain reached a peak during the first six hours post-surgery (mean 966.1 mg/l), which decreased linearly to a mean value of 88.3 mg/l at 2.5 days. In the urine, the vancomycin concentration reached 99.8 mg/l during the first two days, followed by a logarithmic decrease over the next two weeks to reach 0 mg/l at 20 days. The systemic concentration of vancomycin measured in blood serum was low and decreased linearly from 2.17 mg/l at one hour post-surgery to 0 mg/l at four days postoperatively. Conclusion. This is the first long-term pharmacokinetic study that reports vancomycin release from a biphasic injectable ceramic bone substitute. The study shows initial high targeted local vancomycin levels, sustained and complete release at three weeks, and systemic concentrations well below toxic levels. The plain ceramic bone substitute has been proven to regenerate bone but should also be useful in preventing bone infection. Cite this article: M. Stravinskas, M. Nilsson, A. Vitkauskiene, S. Tarasevicius, L. Lidgren. Vancomycin elution from a biphasic ceramic bone substitute. Bone Joint Res 2019;8:49–54. DOI: 10.1302/2046-3758.82.BJR-2018-0174.R2


Bone & Joint Research
Vol. 10, Issue 4 | Pages 277 - 284
1 Apr 2021
Funk GA Menuey EM Ensminger WP Kilway KV McIff TE

Aims. Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading. Methods. For each cement (PMMA or SBB), three formulations were prepared (rifampin-added, vancomycin-added, and control) and made into pellets (6 mm × 12 mm) for testing. Antibiotic elution into phosphate-buffered saline was measured over 14 days. Compressive strength and modulus of all cement pellets were tested over 14 days. Results. The SBB cement was able to deliver rifampin over 14 days, while PMMA was unable to do so. SBB released more vancomycin overall than did PMMA. The mechanical properties of PMMA were significantly reduced upon rifampin incorporation, while there was no effect to the SBB cement. Vancomycin incorporation had no effect on the strength of either cement. Conclusion. SBB was found to be superior in terms of rifampin and vancomycin elution. Additionally, the incorporation of these antibiotics into SBB did not reduce the strength of the resultant SBB cement composite whereas rifampin substantially attenuates the strength of PMMA. Thus, SBB emerges as a potential weight-bearing alternative to PMMA for the local delivery of antibiotics. Cite this article: Bone Joint Res 2021;10(4):277–284


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 13 - 17
1 Jun 2021
Park KJ Chapleau J Sullivan TC Clyburn TA Incavo SJ

Aims. Infection complicating primary total knee arthroplasty (TKA) is a common reason for revision surgery, hospital readmission, patient morbidity, and mortality. Increasing incidence of methicillin-resistant Staphylococcus aureus (MRSA) is a particular concern. The use of vancomycin as prophylactic agent alone or in combination with cephalosporin has not demonstrated lower periprosthetic joint infection (PJI) rates, partly due to timing and dosing of intravenous (IV) vancomycin administration, which have proven important factors in effectiveness. This is a retrospective review of a consecutive series of primary TKAs examining incidence of PJI, adverse reactions, and complications using IV versus intraosseous (IO) vancomycin at 30-day, 90-day, and one-year follow-up. Methods. A retrospective review of 1,060 patients who underwent TKA between May 2016 to July 2020 was performed. There were 572 patients in the IV group and 488 in the IO group, with minimal 30 days of follow-up. Patients were followed up at regularly scheduled intervals (two, six, and 12 weeks). No differences between groups for age, sex, BMI, or baseline comorbidities existed. The IV group received an IV dose of 15 mg/kg vancomycin given over an hour preceding skin incision. The IO group received a 500 mg dose of vancomycin mixed in 150 ml of normal saline, injected into proximal tibia after tourniquet inflation, before skin incision. All patients received an additional dose of first generation cephalosporin. Evaluation included preoperative and postoperative serum creatinine values, tourniquet time, and adverse reactions attributable to vancomycin. Results. Incidence of PJI with minimum 90-day follow-up was 1.4% (eight knees) in the IV group and 0.22% (one knee) in IO group (p = 0.047). This preliminary report demonstrated an reduction in the incidence of infection in TKA using IO vancomycin combined with a first-generation cephalosporin. While the study suffers from limitations of a retrospective, multi-surgeon investigation, early findings are encouraging. Conclusion. IO delivery of vancomycin after tourniquet inflation is a safe and effective alternative to IV administration, eliminating the logistical challenges of timely dosing. Cite this article: Bone Joint J 2021;103-B(6 Supple A):13–17


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 163 - 169
1 Jun 2020
Lawrie CM Jo S Barrack T Roper S Wright RW Nunley RM Barrack RL

Aims. The aim of this study was to determine if the local delivery of vancomycin and tobramycin in primary total knee arthroplasty (TKA) can achieve intra-articular concentrations exceeding the minimum inhibitory concentration thresholds for bacteria causing acute prosthetic joint infection (PJI). Methods. Using a retrospective single-institution database of all primary TKAs performed between January 1 2014 and May 7 2019, we identified patients with acute PJI that were managed surgically within 90 days of the initial procedure. The organisms from positive cultures obtained at the time of revision were tested for susceptibility to gentamicin, tobramycin, and vancomycin. A prospective study was then performed to determine the intra-articular antibiotic concentration on postoperative day one after primary TKA using one of five local antibiotic delivery strategies with tobramycin and/or vancomycin mixed into the polymethylmethacrylate (PMMA) or vancomycin powder. Results. A total of 19 patients with acute PJI after TKA were identified and 29 unique bacterial isolates were recovered. The mean time to revision was 37 days (6 to 84). Nine isolates (31%) were resistant to gentamicin, ten (34%) were resistant to tobramycin, and seven (24%) were resistant to vancomycin. Excluding one Fusobacterium nucleatum, which was resistant to all three antibiotics, all isolates resistant to tobramycin or gentamicin were susceptible to vancomycin and vice versa. Overall, 2.4 g of tobramycin hand-mixed into 80 g of PMMA and 1 g of intra-articular vancomycin powder consistently achieved concentrations above the minimum inhibitory concentrations of susceptible organisms. Conclusion. One-third of bacteria causing acute PJI after primary TKA were resistant to the aminoglycosides commonly mixed into PMMA, and one-quarter were resistant to vancomycin. With one exception, all bacteria resistant to tobramycin were susceptible to vancomycin and vice versa. Based on these results, the optimal cover for organisms causing most cases of acute PJI after TKA can be achieved with a combination of tobramycin mixed in antibiotic cement, and vancomycin powder. Cite this article: Bone Joint J 2020;102-B(6 Supple A):163–169


Bone & Joint Research
Vol. 3, Issue 4 | Pages 101 - 107
1 Apr 2014
Edmondson MC Day R Wood D

Objectives. The most concerning infection of allografts and operative procedures is methicillin resistant Staphylococcus aureus (MRSA) and no current iontophoresed antibiotics effectively combat this microbe. It was initially hypothesised that iontophoresis of vancomycin through bone would not be effective due to its large molecular size and lack of charge. The aim of this study was to determine whether this was a viable procedure and to find the optimum conditions for its use. . Methods. An iontophoresis cell was set up with varying concentrations of Vancomycin within the medulla of a section of sheep tibia, sealed from an external saline solution. The cell was run for varying times, Vancomycin concentrations and voltages, to gain information on optimisation of conditions for impregnating the graft. Each graft was then sectioned and dust ground from the exposed surface. The dust was serially washed to extract the Vancomycin and concentrations measured and plotted for all variables tested. Results. Vancomycin was successfully delivered and impregnated to the graft using the iontophoresis technique. The first order fit to the whole data set gave a significant result (p = 0.0233), with a significant concentration (p = 0.02774) component. The time component was the next most significant (p = 0.0597), but did not exceed the 95% confidence level. Conclusions. Iontophoresis is an effective method for delivering Vancomycin to allograft bone. The concentrations of the vancomycin solution affected the bone concentration, but results were highly variable. Further study should be done on the effectiveness of delivering different antibiotics using this method. Cite this article: Bone Joint Res 2014;3:101–7


The Bone & Joint Journal
Vol. 105-B, Issue 11 | Pages 1135 - 1139
1 Nov 2023
Young SW Chen W Clarke HD Spangehl MJ

Prophylactic antibiotics are important in reducing the risk of periprosthetic joint infection (PJI) following total knee arthroplasty. Their effectiveness depends on the choice of antibiotic and the optimum timing of their administration, to ensure adequate tissue concentrations. Cephalosporins are typically used, but an increasing number of resistant organisms are causing PJI, leading to the additional use of vancomycin. There are difficulties, however, with the systemic administration of vancomycin including its optimal timing, due to the need for prolonged administration, and potential adverse reactions. Intraosseous regional administration distal to a tourniquet is an alternative and attractive mode of delivery due to the ease of obtaining intraosseous access. Many authors have reported the effectiveness of intraosseous prophylaxis in achieving higher concentrations of antibiotic in the tissues compared with intravenous administration, providing equal or enhanced prophylaxis while minimizing adverse effects. This annotation describes the technique of intraosseous administration of antibiotics and summarizes the relevant clinical literature to date. Cite this article: Bone Joint J 2023;105-B(11):1135–1139


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 284 - 293
1 Mar 2023
Li Y Zhang X Ji B Wulamu W Yushan N Guo X Cao L

Aims. Gram-negative periprosthetic joint infection (PJI) has been poorly studied despite its rapidly increasing incidence. Treatment with one-stage revision using intra-articular (IA) infusion of antibiotics may offer a reasonable alternative with a distinct advantage of providing a means of delivering the drug in high concentrations. Carbapenems are regarded as the last line of defense against severe Gram-negative or polymicrobial infection. This study presents the results of one-stage revision using intra-articular carbapenem infusion for treating Gram-negative PJI, and analyzes the characteristics of bacteria distribution and drug sensitivity. Methods. We retrospectively reviewed 32 patients (22 hips and 11 knees) who underwent single-stage revision combined with IA carbapenem infusion between November 2013 and March 2020. The IA and intravenous (IV) carbapenem infusions were administered for a single Gram-negative infection, and IV vancomycin combined with IA carbapenems and vancomycin was applied for polymicrobial infection including Gram-negative bacteria. The bacterial community distribution, drug sensitivity, infection control rate, functional recovery, and complications were evaluated. Reinfection or death caused by PJI was regarded as a treatment failure. Results. Gram-negative PJI was mainly caused by Escherichia coli (8/34), Enterobacter cloacae (7/34), and Klebsiella pneumoniae (5/34). Seven cases (7/32) involved polymicrobial PJIs. The resistance rates of penicillin, cephalosporin, quinolones, and sulfonamides were > 10%, and all penicillin and partial cephalosporins (first and second generation) were > 30%. Of 32 cases, treatment failed to eradicate infection in only three cases (9.4%), at a mean follow-up of 55.1 months (SD 25 to 90). The mean postoperative Harris Hip Score and Hospital for Special Surgery knee score at the most recent follow-up were 81 (62 to 91) and 79 (56 to 89), respectively. One patient developed a fistula, and another presented with a local rash on an infected joint. Conclusion. The use of IA carbapenem delivered alongside one-stage revision effectively controlled Gram-negative infection and obtained acceptable clinical outcomes with few complications. Notably, first- and second-generation cephalosporins and penicillin should be administrated with caution, due to a high incidence of resistance. Cite this article: Bone Joint J 2023;105-B(3):284–293


Bone & Joint Research
Vol. 11, Issue 11 | Pages 835 - 842
17 Nov 2022
Wiesli MG Livio F Achermann Y Gautier E Wahl P

Aims. There is a considerable challenge in treating bone infections and orthopaedic device-associated infection (ODAI), partly due to impaired penetration of systemically administrated antibiotics at the site of infection. This may be circumvented by local drug administration. Knowledge of the release kinetics from any carrier material is essential for proper application. Ceftriaxone shows a particular constant release from calcium sulphate (CaSO. 4. ) in vitro, and is particularly effective against streptococci and a large portion of Gram-negative bacteria. We present the clinical release kinetics of ceftriaxone-loaded CaSO. 4. applied locally to treat ODAI. Methods. A total of 30 operations with ceftriaxone-loaded CaSO. 4. had been performed in 28 patients. Ceftriaxone was applied as a single local antibiotic in 21 operations and combined with vancomycin in eight operations, and in an additional operation with vancomycin and amphotericin B. Sampling of wound fluid was performed from drains or aspirations. Ceftriaxone concentrations were measured by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Results. A total of 37 wound fluid concentrations from 16 operations performed in 14 patients were collected. The ceftriaxone concentrations remained approximately within a range of 100 to 200 mg/l up to three weeks. The median concentration was 108.9 mg/l (interquartile range 98.8 to 142.5) within the first ten days. No systemic adverse reactions were observed. Conclusion. Our study highlights new clinical data of locally administered ceftriaxone with CaSO. 4. as carrier material. The near-constant release of ceftriaxone from CaSO. 4. observed in vitro could be confirmed in vivo. The concentrations remained below known local toxicity thresholds. Cite this article: Bone Joint Res 2022;11(11):835–842


Bone & Joint Research
Vol. 6, Issue 3 | Pages 132 - 136
1 Mar 2017
Yuenyongviwat V Ingviya N Pathaburee P Tangtrakulwanich B

Objectives. Vancomycin and fosfomycin are antibiotics commonly used to treat methicillin-resistant Staphylococcus aureus (MRSA) infection. This study compares the in vitro inhibitory effects against MRSA of articulating cement spacers impregnated with either vancomycin or fosfomycin. Methods. Vancomycin-impregnated articulating cement spacers and fosfomycin-impregnated articulating cement spacers were immersed in sterile phosphate-buffered saline (PBS) solutions and then incubated. Samples were collected for bioactivity evaluation. The aliquots were tested for MRSA inhibition with the disc diffusion method, and the inhibition zone diameters were measured. The inhibition zone differences were evaluated using the Wilcoxon Rank Sum Test. Results. The vancomycin group had significantly larger inhibition zones than the fosfomycin group from day three through to completion of the fourth week of incubation (p < 0.001). The vancomycin group exhibited a MRSA inhibition zone up to four weeks but the fosfomycin group showed an inhibition zone for only three days and after that did not show the the potential to inhibit MRSA. Conclusion. This in vitro study found that the inhibitory effect of vancomycin-impregnated articulating cement spacers against MRSA outperformed fosfomycin-impregnated articulating cement spacers. Further comparing our results to other published reports suggests there might be a limitation of the disc diffusion bioassay to show a large inhibitory zone in a high concentration of a highly soluble antibiotic. Cite this article: V. Yuenyongviwat, N. Ingviya, P. Pathaburee, B. Tangtrakulwanich. Inhibitory effects of vancomycin and fosfomycin on methicillin-resistant Staphylococcus aureus from antibiotic-impregnated articulating cement spacers. Bone Joint Res 2017;6:132–136. DOI: 10.1302/2046-3758.63.2000639


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 833 - 836
1 Aug 2023
Mancino F Gant V Meek DRM Haddad FS


Bone & Joint 360
Vol. 13, Issue 1 | Pages 13 - 16
1 Feb 2024

The February 2024 Hip & Pelvis Roundup. 360. looks at: Trial of vancomycin and cefazolin as surgical prophylaxis in arthroplasty; Is preoperative posterior femoral neck tilt a risk factor for fixation failure? Cemented versus uncemented hemiarthroplasty for displaced intracapsular fractures of the hip; Periprosthetic fractures in larger hydroxyapatite-coated stems: are collared stems a better alternative for total hip arthroplasty?; Postoperative periprosthetic fracture following hip arthroplasty with a polished taper slip versus composite beam stem; Is oral tranexamic acid as good as intravenous?; Stem design and the risk of early periprosthetic femur fractures following THA in elderly patients; Does powered femoral broaching compromise patient safety in total hip arthroplasty?


The Bone & Joint Journal
Vol. 99-B, Issue 11 | Pages 1537 - 1544
1 Nov 2017
Wahl P Guidi M Benninger E Rönn K Gautier E Buclin T Magnin J Livio F

Aims. Calcium sulphate (CaSO. 4. ) is a resorbable material that can be used simultaneously as filler of a dead space and as a carrier for the local application of antibiotics. Our aim was to describe the systemic exposure and the wound fluid concentrations of vancomycin in patients treated with vancomycin-loaded CaSO. 4. as an adjunct to the routine therapy of bone and joint infections. Patients and Methods. A total of 680 post-operative blood and 233 wound fluid samples were available for analysis from 94 implantations performed in 87 patients for various infective indications. Up to 6 g of vancomycin were used. Non-compartmental pharmacokinetic analysis was performed on the data from 37 patients treated for an infection of the hip. Results. The overall systemic exposure remained within a safe range, even in patients with post-operative renal failure, none requiring removal of the pellets. Local concentrations were approximately ten times higher than with polymethylmethacrylate (PMMA) as a carrier, but remained below reported cell toxicity thresholds. Decreasing concentrations in wound fluid were observed over several weeks, but remained above the common minimum inhibitory concentrations for Staphylococcus up to three months post-operatively. . Conclusion. This study provides the first pharmacokinetic description of the local application of vancomycin with CaSO. 4. as a carrier, documenting slow release, systemic safety and a release profile far more interesting than from PMMA. In particular, considering in vitro data, concentrations of vancomycin active against staphylococcal biofilm were seen for several weeks. Cite this article: Bone Joint J 2017;99-B:1537–44


Bone & Joint 360
Vol. 13, Issue 2 | Pages 44 - 46
1 Apr 2024

The April 2024 Research Roundup. 360. looks at: Prevalence and characteristics of benign cartilaginous tumours of the shoulder joint; Is total-body MRI useful as a screening tool to rule out malignant progression in patients with multiple osteochondromas?; Effects of vancomycin and tobramycin on compressive and tensile strengths of antibiotic bone cement: a biomechanical study; Biomarkers for early detection of Charcot arthropathy; Strong association between growth hormone therapy and proximal tibial physeal avulsion fractures in children and adolescents; UK pregnancy in orthopaedics (UK-POP): a cross-sectional study of UK female trauma and orthopaedic surgeons and their experiences of pregnancy; Does preoperative weight loss change the risk of adverse outcomes in total knee arthroplasty by initial BMI classification?


Bone & Joint Open
Vol. 4, Issue 7 | Pages 516 - 522
10 Jul 2023
Mereddy P Nallamilli SR Gowda VP Kasha S Godey SK Nallamilli RR GPRK R Meda VGR

Aims. Musculoskeletal infection is a devastating complication in both trauma and elective orthopaedic surgeries that can result in significant morbidity. Aim of this study was to assess the effectiveness and complications of local antibiotic impregnated dissolvable synthetic calcium sulphate beads (Stimulan Rapid Cure) in the hands of different surgeons from multiple centres in surgically managed bone and joint infections. Methods. Between January 2019 and December 2022, 106 patients with bone and joint infections were treated by five surgeons in five hospitals. Surgical debridement and calcium sulphate bead insertion was performed for local elution of antibiotics in high concentration. In all, 100 patients were available for follow-up at regular intervals. Choice of antibiotic was tailor made for each patient in consultation with microbiologist based on the organism grown on culture and the sensitivity. In majority of our cases, we used a combination of vancomycin and culture sensitive heat stable antibiotic after a thorough debridement of the site. Primary wound closure was achieved in 99 patients and a split skin graft closure was done in one patient. Mean follow-up was 20 months (12 to 30). Results. Overall, six out of 106 patients (5.6%) presented with sepsis and poorly controlled comorbid conditions, and died in the hospital within few days of index surgery. Out of the remaining 100 patients, control of infection was achieved in 95 patients (95%). Persistence of infection was noted in five (5%) patients. Out of these 95 patients that had good control of infection, four patients (4.2%) with gap nonunion needed Masquelet procedure to achieve union. Conclusion. Our multicentre experience confirmed that surgical debridement along with calcium sulphate bead insertion was effective in treating bone and joint infections without any side effects and complications. Cite this article: Bone Jt Open 2023;4(7):516–522


Bone & Joint Research
Vol. 11, Issue 9 | Pages 629 - 638
1 Sep 2022
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Aims. Here we used a mature seven-day biofilm model of Staphylococcus aureus, exposed to antibiotics up to an additional seven days, to establish the effectiveness of either mechanical cleaning or antibiotics or non-contact induction heating, and which combinations could eradicate S. aureus in mature biofilms. Methods. Mature biofilms of S. aureus (ATCC 29213) were grown on titanium alloy (Ti6Al4V) coupons for seven days and were subjected to the following treatments or their combinations: antibiotics, mechanical cleaning, or heat shock by induction heating of 60°C for one minute. Experiments were repeated at least five times. Results. In the untreated biofilm, growth up to 1.8×10. 11. colony-forming units (CFU)/cm. 2. was observed. Treatment with ciprofloxacin, flucloxacillin, vancomycin, cefuroxime, and amoxicillin all with rifampicin gave 6.0 log, 6.1 log, 1.4 log, 4.8 log, and 3.6 log reduction in CFU/cm. 2. , respectively. Mechanical cleaning alone resulted in 4.9 log reduction and induction heating in 7.3 log reduction. There was an additional effect of ciprofloxacin, flucloxacillin, and induction heating when used in combinations. There was no additional effect for mechanical cleaning. No bacterial growth could be detected after induction heating followed by seven days of ciprofloxacin with rifampicin. Conclusion. Mechanical cleaning, antibiotics, and non-contact induction heating reduced the bacterial load of mature S. aureus biofilms with approximately 5 log or more as a single treatment. The effect of mechanical cleaning on mature S. aureus biofilms was limited when used in combination with antibiotics and/or induction heating. Cite this article: Bone Joint Res 2022;11(9):629–638


Bone & Joint Research
Vol. 9, Issue 5 | Pages 211 - 218
1 May 2020
Hashimoto A Miyamoto H Kobatake T Nakashima T Shobuike T Ueno M Murakami T Noda I Sonohata M Mawatari M

Aims. Biofilm formation is intrinsic to prosthetic joint infection (PJI). In the current study, we evaluated the effects of silver-containing hydroxyapatite (Ag-HA) coating and vancomycin (VCM) on methicillin-resistant Staphylococcus aureus (MRSA) biofilm formation. Methods. Pure titanium discs (Ti discs), Ti discs coated with HA (HA discs), and 3% Ag-HA discs developed using a thermal spraying were inoculated with MRSA suspensions containing a mean in vitro 4.3 (SD 0.8) x 10. 6. or 43.0 (SD 8.4) x 10. 5. colony-forming units (CFUs). Immediately after MRSA inoculation, sterile phosphate-buffered saline or VCM (20 µg/ml) was added, and the discs were incubated for 24 hours at 37°C. Viable cell counting, 3D confocal laser scanning microscopy with Airyscan, and scanning electron microscopy were then performed. HA discs and Ag HA discs were implanted subcutaneously in vivo in the dorsum of rats, and MRSA suspensions containing a mean in vivo 7.2 (SD 0.4) x 10. 6.   or 72.0 (SD 4.2) x 10. 5.   CFUs were inoculated on the discs. VCM was injected subcutaneously daily every 12 hours followed by viable cell counting. Results. Biofilms that formed on HA discs were thicker and larger than those on Ti discs, whereas those on Ag-HA discs were thinner and smaller than those on Ti discs. Viable bacterial counts in vivo revealed that Ag-HA combined with VCM was the most effective treatment. Conclusion. Ag-HA with VCM has a potential synergistic effect in reducing MRSA biofilm formation and can thus be useful for preventing and treating PJI. Cite this article:Bone Joint Res. 2020;9(5):211–218


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 11 | Pages 1529 - 1536
1 Nov 2011
Galasso O Mariconda M Calonego G Gasparini G

Coloured bone cements have been introduced to make the removal of cement debris easier at the time of primary and revision joint replacement. We evaluated the physical, mechanical and pharmacological effects of adding methylene blue to bone cement with or without antibiotics (gentamicin, vancomycin or both). The addition of methylene blue to plain cement significantly decreased its mean setting time (570 seconds (. sd. 4) vs 775 seconds (. sd. 11), p = 0.01), mean compression strength (95.4 MPa (. sd. 3) vs 100.1 MPa (. sd.  6), p = 0.03), and mean bending strength (65.2 MPa (. sd. 5) vs 76.6 MPa (. sd. 4), p < 0.001) as well as its mean elastic modulus (2744 MPa (. sd. 97) vs 3281 MPa (. sd. 110), p < 0.001). The supplementation of the coloured cement with vancomycin and gentamicin decreased its mean bending resistance (55.7 MPa (. sd. 4) vs 65.2 MPa (. sd . 5), p < 0.001).The methylene blue significantly decreased the mean release of gentamicin alone (228.2 µg (. sd. 24) vs 385.5 µg (. sd . 26), p < 0.001) or in combination with vancomycin (498.5 µg (. sd. 70) vs 613 µg (. sd. 25), p = 0.018) from the bone cement. This study demonstrates several theoretical disadvantages of the antibiotic-loaded bone cement coloured with methylene blue


Aims

This study investigated vancomycin-microbubbles (Vm-MBs) and meropenem (Mp)-MBs with ultrasound-targeted microbubble destruction (UTMD) to disrupt biofilms and improve bactericidal efficiency, providing a new and promising strategy for the treatment of device-related infections (DRIs).

Methods

A film hydration method was used to prepare Vm-MBs and Mp-MBs and examine their characterization. Biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli were treated with different groups. Biofilm biomass differences were determined by staining. Thickness and bacterial viability were observed with confocal laser scanning microscope (CLSM). Colony counts were determined by plate-counting. Scanning electron microscopy (SEM) observed bacterial morphology.


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 632 - 638
1 Jun 2024
Hart CM Kelley BV Mamouei Z Turkmani A Ralston M Arnold M Bernthal NM Sassoon AA

Aims. Delayed postoperative inoculation of orthopaedic implants with persistent wound drainage or bacterial seeding of a haematoma can result in periprosthetic joint infection (PJI). The aim of this in vivo study was to compare the efficacy of vancomycin powder with vancomycin-eluting calcium sulphate beads in preventing PJI due to delayed inoculation. Methods. A mouse model of PJI of the knee was used. Mice were randomized into groups with intervention at the time of surgery (postoperative day (POD) 0): a sterile control (SC; n = 6); infected control (IC; n = 15); systemic vancomycin (SV; n = 9); vancomycin powder (VP; n = 21); and vancomycin bead (VB; n = 19) groups. Delayed inoculation was introduced during an arthrotomy on POD 7 with 1 × 10. 5. colony-forming units (CFUs) of a bioluminescent strain of Staphylococcus aureus. The bacterial burden was monitored using bioluminescence in vivo. All mice were killed on POD 21. Implants and soft-tissue were harvested and sonicated for analysis of the CFUs. Results. The mean in vivo bioluminescence in the VB group was significantly lower on POD 8 and POD 10 compared with the other groups. There was a significant 1.3-log. 10. (95%) and 1.5-log. 10. (97%) reduction in mean soft-tissue CFUs in the VB group compared with the VP and IC groups (3.6 × 10. 3. vs 7.0 × 10. 4. ; p = 0.022; 3.6 × 10. 3. vs 1.0 × 10. 5. ; p = 0.007, respectively) at POD 21. There was a significant 1.6-log. 10. (98%) reduction in mean implant CFUs in the VB group compared with the IC group (1.3 × 10. 0. vs 4.7 × 10. 1. , respectively; p = 0.038). Combined soft-tissue and implant infection was prevented in 10 of 19 mice (53%) in the VB group as opposed to 5 of 21 (24%) in the VP group, 3 of 15 (20%) in the IC group, and 0% in the SV group. Conclusion. In our in vivo mouse model, antibiotic-releasing calcium sulphate beads appeared to outperform vancomycin powder alone in lowering the bacterial burden and preventing soft-tissue and implant infections. Cite this article: Bone Joint J 2024;106-B(6):632–638


Bone & Joint Open
Vol. 3, Issue 4 | Pages 284 - 290
1 Apr 2022
O'Hara NN Carullo J Joshi M Banoub M Claeys KC Sprague S Slobogean GP O'Toole RV

Aims. There is increasing evidence to support the use of topical antibiotics to prevent surgical site infections. Although previous research suggests a minimal nephrotoxic risk with a single dose of vancomycin powder, fracture patients often require multiple procedures and receive additional doses of topical antibiotics. We aimed to determine if cumulative doses of intrawound vancomycin or tobramycin powder for infection prophylaxis increased the risk of drug-induced acute kidney injury (AKI) among fracture patients. Methods. This cohort study was a secondary analysis of single-centre Program of Randomized Trials to Evaluate Pre-operative Antiseptic Skin Solutions in Orthopaedic Trauma (PREP-IT) trial data. We included patients with a surgically treated appendicular fracture. The primary outcome was drug-induced AKI. The odds of AKI per gram of vancomycin or tobramycin powder were calculated using Bayesian regression models, which adjusted for measured confounders and accounted for the interactive effects of vancomycin and tobramycin. Results. Of the 782 included patients (mean age 48 years (SD 20); 59% male), 83% (n = 648) received at least one vancomycin dose (cumulative range 1 to 12 g). Overall, 45% of the sample received at least one tobramycin dose (cumulative range 1.2 to 9.6 g). Drug-induced AKI occurred in ten patients (1.2%). No association was found between the cumulative dose of vancomycin and drug-induced AKI (odds ratio (OR) 1.08 (95% credible interval (CrI) 0.52 to 2.14)). Additional doses of tobramycin were associated with a three-fold increase in the adjusted odds of drug-induced AKI (OR 3.66 (95% CrI 1.71 to 8.49)). Specifically, the risk of drug-induced AKI rose substantially after 4.8 g of tobramycin powder (7.5% (95% CrI 1.0 to 35.3)). Conclusion. Cumulative doses of vancomycin were not associated with an increased risk of drug-induced AKI among fracture patients. While the risk of drug-induced AKI remains less than 4% with three or fewer 1.2 g tobramycin doses, the estimated risk increases substantially to 8% after four cumulative doses. Level of evidence: Therapeutic Level III. Cite this article: Bone Jt Open 2022;3(4):284–290


Bone & Joint Research
Vol. 13, Issue 3 | Pages 101 - 109
4 Mar 2024
Higashihira S Simpson SJ Morita A Suryavanshi JR Arnold CJ Natoli RM Greenfield EM

Aims. Biofilm infections are among the most challenging complications in orthopaedics, as bacteria within the biofilms are protected from the host immune system and many antibiotics. Halicin exhibits broad-spectrum activity against many planktonic bacteria, and previous studies have demonstrated that halicin is also effective against Staphylococcus aureus biofilms grown on polystyrene or polypropylene substrates. However, the effectiveness of many antibiotics can be substantially altered depending on which orthopaedically relevant substrates the biofilms grow. This study, therefore, evaluated the activity of halicin against less mature and more mature S. aureus biofilms grown on titanium alloy, cobalt-chrome, ultra-high molecular weight polyethylene (UHMWPE), devitalized muscle, or devitalized bone. Methods. S. aureus-Xen36 biofilms were grown on the various substrates for 24 hours or seven days. Biofilms were incubated with various concentrations of halicin or vancomycin and then allowed to recover without antibiotics. Minimal biofilm eradication concentrations (MBECs) were defined by CFU counting and resazurin reduction assays, and were compared with the planktonic minimal inhibitory concentrations (MICs). Results. Halicin continued to exert significantly (p < 0.01) more antibacterial activity against biofilms grown on all tested orthopaedically relevant substrates than vancomycin, an antibiotic known to be affected by biofilm maturity. For example, halicin MBECs against both less mature and more mature biofilms were ten-fold to 40-fold higher than its MIC. In contrast, vancomycin MBECs against the less mature biofilms were 50-fold to 200-fold higher than its MIC, and 100-fold to 400-fold higher against the more mature biofilms. Conclusion. Halicin is a promising antibiotic that should be tested in animal models of orthopaedic infection. Cite this article: Bone Joint Res 2024;13(3):101–109


Bone & Joint Research
Vol. 10, Issue 2 | Pages 149 - 155
16 Feb 2021
Shiels SM Sgromolo NM Wenke JC

Aims. High-energy injuries can result in multiple complications, the most prevalent being infection. Vancomycin powder has been used with increasing frequency in orthopaedic trauma given its success in reducing infection following spine surgery. Additionally, large, traumatic injuries require wound coverage and management by dressings such as negative pressure wound therapy (NPWT). NPWT has been shown to decrease the ability of antibiotic cement beads to reduce infection, but its effect on antibiotic powder is not known. The goal of this study was to determine if NPWT reduces the efficacy of topically applied antibiotic powder. Methods. Complex musculoskeletal wounds were created in goats and inoculated with a strain of Staphylococcus aureus modified to emit light. Six hours after contaminating the wounds, imaging, irrigation, and debridement and treatment application were performed. Animals received either vancomycin powder with a wound pouch dressing or vancomycin powder with NPWT. Results. There were no differences in eradication of bacteria when vancomycin powder was used in combination with NPWT (4.5% of baseline) compared to vancomycin powder with a wound pouch dressing (1.7% of baseline) (p = 0.986), even though approximately 50% of the vancomycin was recovered in the NPWT exudate canister. Conclusion. The antimicrobial efficacy of the vancomycin powder was not diminished by the application of NPWT. These topical and locally applied therapies are potentially effective tools that can provide quick, simple treatments to prevent infection while providing coverage. By reducing the occurrence of infection, the recovery is shortened, leading to an overall improvement in quality of life. Cite this article: Bone Joint Res 2021;10(2):149–155


Bone & Joint Open
Vol. 3, Issue 1 | Pages 35 - 41
9 Jan 2022
Buchalter DB Nduaguba A Teo GM Kugelman D Aggarwal VK Long WJ

Aims. Despite recent literature questioning their use, vancomycin and clindamycin often substitute cefazolin as the preoperative antibiotic prophylaxis in primary total knee arthroplasty (TKA), especially in the setting of documented allergy to penicillin. Topical povidone-iodine lavage and vancomycin powder (VIP) are adjuncts that may further broaden antimicrobial coverage, and have shown some promise in recent investigations. The purpose of this study, therefore, is to compare the risk of acute periprosthetic joint infection (PJI) in primary TKA patients who received cefazolin and VIP to those who received a non-cephalosporin alternative and VIP. Methods. This was a retrospective cohort study of 11,550 primary TKAs performed at an orthopaedic hospital between 2013 and 2019. The primary outcome was PJI occurring within 90 days of surgery. Patients were stratified into two groups (cefazolin vs non-cephalosporin) based on their preoperative antibiotic. All patients also received the VIP protocol at wound closure. Bivariate and multiple logistic regression analyses were performed to control for potential confounders and identify the odds ratio of PJI. Results. In all, 10,484 knees (90.8%) received cefazolin, while 1,066 knees (9.2%) received a non-cephalosporin agent (either vancomycin or clindamycin) as preoperative prophylaxis. The rate of PJI in the cefazolin group (0.5%; 48/10,484) was significantly lower than the rate of PJI in the non-cephalosporin group (1.0%; 11/1,066) (p = 0.012). After controlling for confounding variables, the odds ratio (OR) of developing a PJI was increased in the non-cephalosporin cohort compared to the cefazolin cohort (OR 2.389; 1.2 to 4.6); p = 0.01). Conclusion. Despite the use of topical irrigant solutions and addition of local antimicrobial agents, the use of a non-cephalosporin perioperative antibiotic continues to be associated with a greater risk of TKA PJI compared to cefazolin. Strategies that increase the proportion of patients receiving cefazolin rather than non-cephalosporin alternatives must be emphasized. Cite this article: Bone Jt Open 2022;3(1):35–41


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 3 - 10
1 Jul 2020
Sosa BR Niu Y Turajane K Staats K Suhardi V Carli A Fischetti V Bostrom M Yang X

Aims. Current treatments of prosthetic joint infection (PJI) are minimally effective against Staphylococcus aureus biofilm. A murine PJI model of debridement, antibiotics, and implant retention (DAIR) was used to test the hypothesis that PlySs2, a bacteriophage-derived lysin, can target S. aureus biofilm and address the unique challenges presented in this periprosthetic environment. Methods. The ability of PlySs2 and vancomycin to kill biofilm and colony-forming units (CFUs) on orthopaedic implants were compared using in vitro models. An in vivo murine PJI model of DAIR was used to assess the efficacy of a combination of PlySs2 and vancomycin on periprosthetic bacterial load. Results. PlySs2 treatment reduced 99% more CFUs and 75% more biofilm compared with vancomycin in vitro. A combination of PlySs2 and vancomycin in vivo reduced the number of CFUs on the surface of implants by 92% and in the periprosthetic tissue by 88%. Conclusion. PlySs2 lysin was able to reduce biofilm, target planktonic bacteria, and work synergistically with vancomycin in our in vitro models. A combination of PlySs2 and vancomycin also reduced bacterial load in periprosthetic tissue and on the surface of implants in a murine model of DAIR treatment for established PJI. Cite this article: Bone Joint J 2020;102-B(7 Supple B):3–10


Bone & Joint Research
Vol. 9, Issue 4 | Pages 192 - 199
1 Apr 2020
Pijls BG Sanders IMJG Kujiper EJ Nelissen RGHH

Aims. Induction heating is a noninvasive, nonantibiotic treatment modality that can potentially be used to cause thermal damage to the bacterial biofilm on the metal implant surface. The purpose of this study was to determine the effectiveness of induction heating on killing Staphylococcus epidermidis from biofilm and to determine the possible synergistic effect of induction heating and antibiotics. Methods. S. epidermidis biofilms were grown on titanium alloy (Ti6Al4V) coupons for 24 hours (young biofilm) and seven days (mature biofilm). These coupons with biofilm were heated to temperatures of 50°C, 55°C, 60°C, 65°C, 70°C, 80°C, and 90°C for 3.5 minutes and subsequently exposed to vancomycin and rifampicin at clinically relevant concentrations. Results. For the young biofilm, total eradication was observed at 65°C or higher for 3.5 minutes followed by 24 hours of vancomycin 10 mg/l and rifampicin 1 mg/l. For the mature biofilm, total eradication was observed at 60°C for 3.5 minutes followed by 24 hours of vancomycin 10 mg/l and rifampicin 1 mg/l. Total eradication was also observed at 60°C for 3.5 minutes followed by 24 hours of vancomycin 1 mg/l and rifampicin 1 mg/l followed by another thermal shock of 60°C for 3.5 minutes (two thermal shocks). Conclusion. Induction heating of Ti6Al4V coupons is effective in reducing bacterial load in vitro for S. epidermidis biofilms. Induction heating and antibiotics have a synergistic effect resulting in total eradication of the biofilm at 60°C or higher for clinically relevant concentrations of vancomycin and rifampicin. Cite this article:Bone Joint Res. 2020;9(4):192–199


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 185 - 190
1 Jun 2021
Kildow BJ Patel SP Otero JE Fehring KA Curtin BM Springer BD Fehring TK

Aims. Debridement, antibiotics, and implant retention (DAIR) remains one option for the treatment of acute periprosthetic joint infection (PJI) despite imperfect success rates. Intraosseous (IO) administration of vancomycin results in significantly increased local bone and tissue concentrations compared to systemic antibiotics alone. The purpose of this study was to evaluate if the addition of a single dose of IO regional antibiotics to our protocol at the time of DAIR would improve outcomes. Methods. A retrospective case series of 35 PJI TKA patients, with a median age of 67 years (interquartile range (IQR) 61 to 75), who underwent DAIR combined with IO vancomycin (500 mg), was performed with minimum 12 months' follow-up. A total of 26 patients with primary implants were treated for acute perioperative or acute haematogenous infections. Additionally, nine patients were treated for chronic infections with components that were considered unresectable. Primary outcome was defined by no reoperations for infection, nor clinical signs or symptoms of PJI. Results. Mean follow-up for acute infection was 16.5 months (12.1 to 24.2) and 15.8 months (12 to 24.8) for chronic infections with unresectable components. Overall non-recurrence rates for acute infection was 92.3% (24/26) but only 44.4% (4/9) for chronic infections with unresectable components. The majority of patients remained on suppressive oral antibiotics. Musculoskeletal Infection Society (MSIS) host grade was a significant indicator of failure (p < 0.001). Conclusion. The addition of IO vancomycin at the time of DAIR was shown to be safe with improved results compared to current literature using standard DAIR without IO antibiotic administration. Use of this technique in chronic infections should be applied with caution. While these results are encouraging, this technique requires longer follow-up before widespread adoption. Cite this article: Bone Joint J 2021;103-B(6 Supple A):185–190


Bone & Joint 360
Vol. 13, Issue 3 | Pages 35 - 36
3 Jun 2024

The June 2024 Spine Roundup. 360. looks at: Intraoperative navigation increases the projected lifetime cancer risk in patients undergoing surgery for adolescent idiopathic scoliosis; Intrawound vancomycin powder reduces delayed deep surgical site infections following posterior spinal fusion for adolescent idiopathic scoliosis; Characterizing negative online reviews of spine surgeons; Proximal junctional failure after surgical instrumentation in adult spinal deformity: biomechanical assessment of proximal instrumentation stiffness; Nutritional supplementation and wound healing: a randomized controlled trial


Bone & Joint 360
Vol. 12, Issue 3 | Pages 30 - 32
1 Jun 2023

The June 2023 Spine Roundup. 360. looks at: Characteristics and comparative study of thoracolumbar spine injury and dislocation fracture due to tertiary trauma; Sublingual sufentanil for postoperative pain management after lumbar spinal fusion surgery; Minimally invasive bipolar technique for adult neuromuscular scoliosis; Predictive factors for degenerative lumbar spinal stenosis; Lumbosacral transitional vertebrae and lumbar fusion surgery at level L4/5; Does recall of preoperative scores contaminate trial outcomes? A randomized controlled trial; Vancomycin in fibrin glue for prevention of SSI; Perioperative nutritional supplementation decreases wound healing complications following elective lumbar spine surgery: a randomized controlled trial


Bone & Joint 360
Vol. 13, Issue 4 | Pages 31 - 35
2 Aug 2024

The August 2024 Trauma Roundup. 360. looks at: Does topical vancomycin prevent fracture-related infections in closed fractures undergoing open reduction and internal fixation? A randomized controlled trial; Is postoperative splinting advantageous after upper limb fracture surgery?; Does suprapatellar nailing resolve knee pain?; Locking versus non-locking plate fixation in comminuted talar neck fractures: a biomechanical study using cadaveric specimens; Revolutionizing recovery metrics: PROMIS versus SMFA in orthopaedic trauma care; Dorsal hook plating of patella fractures: reliable fixation and satisfactory outcomes; The impact of obesity on subtrochanteric femur fracture outcomes; Low-dose NSAIDs (ketorolac) and cytokine modulation in orthopaedic polytrauma: a detailed analysis


The Bone & Joint Journal
Vol. 99-B, Issue 1 | Pages 73 - 77
1 Jan 2017
Frew NM Cannon T Nichol T Smith TJ Stockley I

Aims. Vancomycin is commonly added to acrylic bone cement during revision arthroplasty surgery. Proprietary cement preparations containing vancomycin are available, but are significantly more expensive. We investigated whether the elution of antibiotic from ‘home-made’ cement containing vancomycin was comparable with more expensive commercially available vancomycin impregnated cement. Materials and Methods. A total of 18 cement discs containing either proprietary CopalG+V; or ‘home-made’ CopalR+G with vancomycin added by hand, were made. Each disc contained the same amount of antibiotic (0.5 g gentamycin, 2 g vancomycin) and was immersed in ammonium acetate buffer in a sealed container. Fluid from each container was sampled at eight time points over a two-week period. The concentrations of gentamicin and vancomycin in the fluid were analysed using high performance liquid chromatography mass spectrometry. Results. The highest peak concentrations of antibiotic were observed from the ‘home-made’ cements containing vancomycin, added as in the operating theatre. The overall elution of antibiotic was, fivefold (vancomycin) and twofold (gentamicin) greater from the ‘home-made’ mix compared with the commercially mixed cement. The use of a vacuum during mixing had no significant effect on antibiotic elution in any of the samples. Conclusion. These findings suggest that the addition of 2 g vancomycin powder to gentamicin-impregnated bone cement by hand significantly increases the elution of both antibiotics compared with commercially prepared cements containing vancomycin. We found no significant advantages of using expensive commercially produced vancomycin-impregnated cement and recommend the addition of vancomycin powder by hand in the operating theatre. Cite this article: Bone Joint J 2017;99-B:73–7


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims. Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Methods. Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted. Results. A total of 43 studies were included. Animal models used included fracture-related infections (ten studies), periprosthetic joint infections (five studies), spinal infections (three studies), other implant-associated infections, and osteomyelitis. The most common bacteria were Staphylococcus species. Biofilm was most often observed with scanning electron microscopy. The natural history of biofilm revealed that the process of bacteria attachment, proliferation, maturation, and dispersal would take 14 days. For systemic mono-antibiotic therapy, only two of six studies using vancomycin reported significant biofilm reduction, and none reported eradication. Ten studies showed that combined systemic and topical antibiotics are needed to achieve higher biofilm reduction or eradication, and the effect is decreased with delayed treatment. Overall, 13 studies showed promising therapeutic potential with surface coating and antibiotic loading techniques. Conclusion. Combined topical and systemic application of antimicrobial agents effectively reduces biofilm at early stages. Future studies with sustained release of antimicrobial and biofilm-dispersing agents tailored to specific pathogens are warranted to achieve biofilm eradication. Cite this article: Bone Joint Res 2022;11(10):700–714


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 171 - 176
1 Jun 2021
Klasan A Schermuksnies A Gerber F Bowman M Fuchs-Winkelmann S Heyse TJ

Aims. The management of periprosthetic joint infection (PJI) after total knee arthroplasty (TKA) is challenging. The correct antibiotic management remains elusive due to differences in epidemiology and resistance between countries, and reports in the literature. Before the efficacy of surgical treatment is investigated, it is crucial to analyze the bacterial strains causing PJI, especially for patients in whom no organisms are grown. Methods. A review of all revision TKAs which were undertaken between 2006 and 2018 in a tertiary referral centre was performed, including all those meeting the consensus criteria for PJI, in which organisms were identified. Using a cluster analysis, three chronological time periods were created. We then evaluated the antibiotic resistance of the identified bacteria between these three clusters and the effectiveness of our antibiotic regime. Results. We identified 129 PJIs with 161 culture identified bacteria in 97 patients. Coagulase-negative staphylococci (CNS) were identified in 46.6% cultures, followed by Staphylococcus aureus in 19.8%. The overall resistance to antibiotics did not increase significantly during the study period (p = 0.454). However, CNS resistance to teicoplanin (p < 0.001), fosfomycin (p = 0.016), and tetracycline (p = 0.014) increased significantly. Vancomycin had an 84.4% overall sensitivity and 100% CNS sensitivity and was the most effective agent. Conclusion. Although we were unable to show an overall increase in antibiotic resistance in organisms that cause PJI after TKA during the study period, this was not true for CNS. It is concerning that resistance of CNS to new antibiotics, but not vancomycin, has increased in a little more than a decade. Our findings suggest that referral centres should continuously monitor their bacteriological analyses, as these have significant implications for prophylactic treatment in both primary arthroplasty and revision arthroplasty for PJI. Cite this article: Bone Joint J 2021;103-B(6 Supple A):171–176


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 867 - 874
1 Jul 2022
Ji B Li G Zhang X Xu B Wang Y Chen Y Cao L

Aims. Periprosthetic joint infections (PJIs) with prior multiple failed surgery for reinfection represent a huge challenge for surgeons because of poor vascular supply and biofilm formation. This study aims to determine the results of single-stage revision using intra-articular antibiotic infusion in treating this condition. Methods. A retrospective analysis included 78 PJI patients (29 hips; 49 knees) who had undergone multiple prior surgical interventions. Our cohort was treated with single-stage revision using a supplementary intra-articular antibiotic infusion. Of these 78 patients, 59 had undergone more than two prior failed debridement and implant retentions, 12 patients had a failed arthroplasty resection, three hips had previously undergone failed two-stage revision, and four had a failed one-stage revision before their single-stage revision. Previous failure was defined as infection recurrence requiring surgical intervention. Besides intravenous pathogen-sensitive agents, an intra-articular infusion of vancomycin, imipenem, or voriconazole was performed postoperatively. The antibiotic solution was soaked into the joint for 24 hours for a mean of 16 days (12 to 21), then extracted before next injection. Recurrence of infection and clinical outcomes were evaluated. Results. A total of 68 patients (87.1%) were free of infection at a mean follow-up time of 85 months (24 to 133). The seven-year infection-free survival was 87.6% (95% confidence interval (CI) 79.4 to 95.8). No significant difference in infection-free survival was observed between hip and knee PJIs (91.5% (95% CI 79.9 to 100) vs 84.7% (95% CI 73.1 to 96.3); p = 0.648). The mean postoperative Harris Hip Score was 76.1 points (63.2 to 92.4) and Hospital for Special Surgery score was 78. 2 (63.2 to 92.4) at the most recent assessment. Polymicrobial and fungal infections accounted for 14.1% (11/78) and 9.0% (7/78) of all cases, respectively. Conclusion. Single-stage revision with intra-articular antibiotic infusion can provide high antibiotic concentration in synovial fluid, thereby overcoming reduced vascular supply and biofilm formation. This supplementary route of administration may be a viable option in treating PJI after multiple failed prior surgeries for reinfection. Cite this article: Bone Joint J 2022;104-B(7):867–874


Bone & Joint Research
Vol. 7, Issue 1 | Pages 46 - 57
1 Jan 2018
Zhou J Zhou XG Wang JW Zhou H Dong J

Objective. In the present study, we aimed to assess whether gelatin/β-tricalcium phosphate (β-TCP) composite porous scaffolds could be used as a local controlled release system for vancomycin. We also investigated the efficiency of the scaffolds in eliminating infections and repairing osteomyelitis defects in rabbits. Methods. The gelatin scaffolds containing differing amounts of of β-TCP (0%, 10%, 30% and 50%) were prepared for controlled release of vancomycin and were labelled G-TCP0, G-TCP1, G-TCP3 and G-TCP5, respectively. The Kirby-Bauer method was used to examine the release profile. Chronic osteomyelitis models of rabbits were established. After thorough debridement, the osteomyelitis defects were implanted with the scaffolds. Radiographs and histological examinations were carried out to investigate the efficiency of eliminating infections and repairing bone defects. Results. The prepared gelatin/β-TCP scaffolds exhibited a homogeneously interconnected 3D porous structure. The G-TCP0 scaffold exhibited the longest duration of vancomycin release with a release duration of eight weeks. With the increase of β-TCP contents, the release duration of the β-TCP-containing composite scaffolds was decreased. The complete release of vancomycin from the G-TCP5 scaffold was achieved within three weeks. In the treatment of osteomyelitis defects in rabbits, the G-TCP3 scaffold showed the most efficacious performance in eliminating infections and repairing bone defects. Conclusions. The composite scaffolds could achieve local therapeutic drug levels over an extended duration. The G-TCP3 scaffold possessed the optimal porosity, interconnection and controlled release performance. Therefore, this scaffold could potentially be used in the treatment of chronic osteomyelitis defects. Cite this article: J. Zhou, X. G. Zhou, J. W. Wang, H. Zhou, J. Dong. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res 2018;7:46–57. DOI: 10.1302/2046-3758.71.BJR-2017-0129.R2


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 158 - 162
1 Jun 2020
Griseti Q Jacquet C Sautet P Abdel MP Parratte S Ollivier M Argenson J

Aims. The aim of this study was to compare the ability of tantalum, 3D porous titanium, antibiotic-loaded bone cement, and smooth titanium alloy to inhibit staphylococci in an in vitro environment, based on the evaluation of the zone of inhibition (ZOI). The hypothesis was that there would be no significant difference in the inhibition of methicillin-sensitive or methicillin-resistant Staphylococcus aureus (MSSA/MRSA) between the two groups. Methods. A total of 30 beads made of three different materials (tantalum/3D porous titanium and smooth titanium alloy) were bathed for one hour in a solution of 1 g vancomycin in 20 ml of sterile water for injection (bath concentration: 50 mg/mL). Ten 1 cm. 3. cylinders of antibiotic-loaded cement were also created by mixing standard surgical cement with 1 g of vancomycin in standardized sterile moulds. The cylinders were then placed on agar plates inoculated with MSSA and MRSA. The ZOIs were measured each day and the cylinders were transferred onto a new inoculated plate. Results. For MSSA and MRSA, no inhibitory effect was found in the control group, and antibiotic-loaded smooth titanium alloy beads showed a short inhibitory effect until day 2. For MSSA, both tantalum and 3D porous titanium beads showed significantly larger mean ZOIs than cement beads (all p < 0.01) each day until day 7 for tantalum and until day 3 for 3D porous titanium. After six days, antibiotic-loaded cement had significantly larger mean ZOIs than the 3D porous titanium (p = 0.027), but no significant difference was found with tantalum (p = 0.082). For MRSA, both tantalum and 3D porous titanium beads had significantly larger mean ZOIs than antibiotic-loaded cement each day until day 6 for tantalum (all p < 0.01) and until day 3 for 3D porous titanium (all p < 0.04). Antibiotic-loaded cement had significantly larger mean ZOIs than tantalum and 3D porous titanium from day 7 to 9 (all p < 0.042). Conclusion. These results show that porous metal implants can deliver local antibiotics over slightly varying time frames based on in vitro analysis. Cite this article: Bone Joint J 2020;102-B(6 Supple A):158–162


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 336 - 344
1 Mar 2020
Ji B Li G Zhang X Wang Y Mu W Cao L

Aims. In the absence of an identified organism, single-stage revision is contraindicated in prosthetic joint infection (PJI). However, no studies have examined the use of intra-articular antibiotics in combination with single-stage revision in these cases. In this study, we present the results of single-stage revision using intra-articular antibiotic infusion for treating culture-negative (CN) PJI. Methods. A retrospective analysis between 2009 and 2016 included 51 patients with CN PJI who underwent single-stage revision using intra-articular antibiotic infusion; these were compared with 192 culture-positive (CP) patients. CN patients were treated according to a protocol including intravenous vancomycin and a direct intra-articular infusion of imipenem and vancomycin alternately used in the morning and afternoon. In the CP patients, pathogen-sensitive intravenous (IV) antibiotics were administered for a mean of 16 days (12 to 21), and for resistant cases, additional intra-articular antibiotics were used. The infection healing rate, Harris Hip Score (HHS), and Hospital for Special Surgery (HSS) knee score were compared between CN and CP groups. Results. Of 51 CN patients, 46 (90.2%) required no additional medical treatment for recurrent infection at a mean of 53.2 months (24 to 72) of follow-up. Impaired kidney function occurred in two patients, and one patient had a local skin rash. No significant difference in the infection control rate was observed between CN and CP PJIs (90.2% (46/51) versus 94.3% (181/192); p = 0.297). The HHS of the CN group showed no substantial difference from that of CP cases (79 versus 81; p = 0.359). However, the CN group showed a mean HSS inferior to that of the CP group (76 versus 80; p = 0.027). Conclusion. Single-stage revision with direct intra-articular antibiotic infusion can be effective in treating CN PJI, and can achieve an infection control rate similar to that in CP patients. However, in view of systemic toxicity, local adverse reactions, and higher costs, additional strong evidence is needed to verify these treatment regimens. Cite this article: Bone Joint J 2020;102-B(3):336–344


Bone & Joint Research
Vol. 8, Issue 11 | Pages 526 - 534
1 Nov 2019
Yang C Wang J Yin Z Wang Q Zhang X Jiang Y Shen H

Objectives. The optimal protocol for antibiotic loading in the articulating cement spacers for the treatment of prosthetic joint infection (PJI) remains controversial. The objective of the present study was to investigate the effectiveness of articulating cement spacers loaded with a new combination of antibiotics. Methods. A retrospective cohort study involving 114 PJI cases treated with implantation of an articulating cement spacer between 2005 and 2016 was performed. The treatment outcomes of the conventional protocol (i.e. gentamicin and vancomycin (GV protocol)) were compared with those reported using the sophisticated antibiotic-loading protocol (i.e. vancomycin, meropenem, and amphotericin (VMA protocol)). Results. There were 62 and 52 PJI cases treated with the GV and VMA protocols, respectively. Antimicrobial susceptibility testing revealed that 22/78 of all isolates (28.2%) in this series were resistant to gentamicin, whereas there were no vancomycin-, meropenem-, or amphotericin-resistant strains. The overall infection recurrence rates were 17.7% (11/62) and 1.9% (1/52), respectively (p = 0.006). In patients with a negative preoperative culture, there was no infection recurrence reported in the VMA cohort (0/45 (0%) vs 10/54 (18.5%) in the GV cohort; p = 0.002). Multivariate analysis indicated that the VMA protocol correlated with a decreased risk of infection recurrence compared with the GV protocol (p = 0.025). Conclusion. The sophisticated VMA protocol for the loading of antibiotics in articulating cement spacers, as part of a two-stage exchange, was associated with a reduced rate of infection recurrence. This proposed protocol appears to be safe and effective, especially in patients with negative culture results prior to the first-stage operation. Cite this article: Bone Joint Res 2019;8:526–534


Bone & Joint Research
Vol. 8, Issue 11 | Pages 526 - 534
1 Nov 2019
Yang C Wang J Yin Z Wang Q Zhang X Jiang Y Shen H

Objectives. The optimal protocol for antibiotic loading in the articulating cement spacers for the treatment of prosthetic joint infection (PJI) remains controversial. The objective of the present study was to investigate the effectiveness of articulating cement spacers loaded with a new combination of antibiotics. Methods. A retrospective cohort study involving 114 PJI cases treated with implantation of an articulating cement spacer between 2005 and 2016 was performed. The treatment outcomes of the conventional protocol (i.e. gentamicin and vancomycin (GV protocol)) were compared with those reported using the sophisticated antibiotic-loading protocol (i.e. vancomycin, meropenem, and amphotericin (VMA protocol)). Results. There were 62 and 52 PJI cases treated with the GV and VMA protocols, respectively. Antimicrobial susceptibility testing revealed that 22/78 of all isolates (28.2%) in this series were resistant to gentamicin, whereas there were no vancomycin-, meropenem-, or amphotericin-resistant strains. The overall infection recurrence rates were 17.7% (11/62) and 1.9% (1/52), respectively (p = 0.006). In patients with a negative preoperative culture, there was no infection recurrence reported in the VMA cohort (0/45 (0%) vs 10/54 (18.5%) in the GV cohort; p = 0.002). Multivariate analysis indicated that the VMA protocol correlated with a decreased risk of infection recurrence compared with the GV protocol (p = 0.025). Conclusion. The sophisticated VMA protocol for the loading of antibiotics in articulating cement spacers, as part of a two-stage exchange, was associated with a reduced rate of infection recurrence. This proposed protocol appears to be safe and effective, especially in patients with negative culture results prior to the first-stage operation. Cite this article: Bone Joint Res 2019;8:526–534


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 914 - 920
1 Jul 2011
Rogers BA Middleton FR Shearwood-Porter N Kinch S Roques A Bradley NW Browne M

Two-stage revision surgery for infected total knee replacement offers the highest rate of success for the elimination of infection. The use of articulating antibiotic-laden cement spacers during the first stage to eradicate infection also allows protection of the soft tissues against excessive scarring and stiffness. We have investigated the effect of cyclical loading of cement spacers on the elution of antibiotics. Femoral and tibial spacers containing vancomycin at a constant concentration and tobramycin of varying concentrations were studied in vitro. The specimens were immersed and loaded cyclically to 250 N, with a flexion excursion of 45°, for 35 000 cycles. The buffered solution was sampled at set intervals and the antibiotic concentration was established so that the elution could be calculated. Unloaded samples were used as a control group for statistical comparison. The elution of tobramycin increased proportionately with its concentration in cement and was significantly higher at all sampling times from five minutes to 1680 minutes in loaded components compared with the control group (p = 0.021 and p = 0.003, respectively). A similar trend was observed with elution of vancomycin, but this failed to reach statistical significance at five, 1320 and 1560 minutes (p = 0.0508, p = 0.067 and p = 0.347, respectively). However, cyclically loaded and control components showed an increased elution of vancomycin with increasing tobramycin concentration in the specimens, despite all components having the same vancomycin concentration. The concentration of tobramycin influences both tobramycin and vancomycin elution from bone cement. Cyclical loading of the cement spacers enhanced the elution of vancomycin and tobramycin


Bone & Joint Research
Vol. 3, Issue 8 | Pages 246 - 251
1 Aug 2014
Chang YH Tai CL Hsu HY Hsieh PH Lee MS Ueng SWN

Objectives. The objective of this study was to compare the elution characteristics, antimicrobial activity and mechanical properties of antibiotic-loaded bone cement (ALBC) loaded with powdered antibiotic, powdered antibiotic with inert filler (xylitol), or liquid antibiotic, particularly focusing on vancomycin and amphotericin B. Methods. Cement specimens loaded with 2 g of vancomycin or amphotericin B powder (powder group), 2 g of antibiotic powder and 2 g of xylitol (xylitol group) or 12 ml of antibiotic solution containing 2 g of antibiotic (liquid group) were tested. Results. Vancomycin elution was enhanced by 234% in the liquid group and by 12% in the xylitol group compared with the powder group. Amphotericin B elution was enhanced by 265% in the liquid group and by 65% in the xylitol group compared with the powder group. Based on the disk-diffusion assay, the eluate samples of vancomycin-loaded ALBC of the liquid group exhibited a significantly larger inhibitory zone than samples of the powder or the xylitol group. Regarding the ALBCs loaded with amphotericin B, only the eluate samples of the liquid group exhibited a clear inhibitory zone, which was not observed in either the xylitol or the powder groups. The ultimate compressive strength was significantly reduced in specimens containing liquid antibiotics. Conclusions. Adding vancomycin or amphotericin B antibiotic powder in distilled water before mixing with bone cement can significantly improve the efficiency of antibiotic release than can loading ALBC with the same dose of antibiotic powder. This simple and effective method for preparation of ALBCs can significantly improve the efficiency of antibiotic release in ALBCs. Cite this article: Bone Joint Res 2014;3:246–51


Bone & Joint Research
Vol. 9, Issue 2 | Pages 49 - 59
1 Feb 2020
Yu K Song L Kang HP Kwon H Back J Lee FY

Aims. To characterize the intracellular penetration of osteoblasts and osteoclasts by methicillin-resistant Staphylococcus aureus (MRSA) and the antibiotic and detergent susceptibility of MRSA in bone. Methods. Time-lapse confocal microscopy was used to analyze the interaction of MRSA strain USA300 with primary murine osteoblasts and osteoclasts. The effects of early and delayed antibiotic treatments on intracellular and extracellular bacterial colony formation and cell death were quantified. We tested the effects of cefazolin, gentamicin, vancomycin, tetracycline, rifampicin, and ampicillin, as well as agents used in surgical preparation and irrigation. Results. MRSA infiltrated bone-resident cells within 15 to 30 minutes. Penetration was most effectively prevented with early (i.e. 30 minutes) antibiotic administration. The combined administration of rifampicin with other antibiotics potentiated their protective effects against MRSA-induced cytotoxicity and most significantly reduced extracellular bacterial bioburden. Gentamicin-containing compounds were most effective in reducing intracellular MRSA bioburden. Of the surgical preparation agents evaluated, betadine reduced in vitro MRSA growth to the greatest extent. Conclusion. The standard of care for open fractures involves debridement and antibiotics within the first six hours of injury but does not account for the window in which bacteria penetrate cells. Antibiotics must be administered as early as possible after injury or prior to incision to prevent intracellular infestation. Rifampicin can potentiate the capacity of antibiotic regimens to reduce MRSA-induced cytotoxicity. Cite this article:Bone Joint Res. 2020;9(2):49–59


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 5 | Pages 643 - 647
1 May 2008
Bridgens J Davies S Tilley L Norman P Stockley I

Bone cements produced by different manufacturers vary in their mechanical properties and antibiotic elution characteristics. Small changes in the formulation of a bone cement, which may not be apparent to surgeons, can also affect these properties. The supplier of Palacos bone cement with added gentamicin changed in 2005. We carried out a study to examine the mechanical characteristics and antibiotic elution of Schering-Plough Palacos, Heraeus Palacos and Depuy CMW Smartset bone cements. Both Heraeus Palacos and Smartset bone cements performed significantly better than Schering-Plough Palacos in terms of mechanical characteristics, with and without additional vancomycin (p < 0.001). All cements show a deterioration in flexural strength with increasing addition of vancomycin, albeit staying above ISO minimum levels. Both Heraeus Palacos and Smartset elute significantly more gentamicin cumulatively than Schering-Plough Palacos. Smartset elutes significantly more vancomycin cumulatively than Heraeus Palacos. The improved antibiotic elution characteristics of Smartset and Heraeus Palacos are not associated with a deterioration in mechanical properties. Although marketed as the ‘original’ Palacos, Heraeus Palacos has significantly altered mechanical and antibiotic elution characteristics compared with the most commonly-used previous version