Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Bone & Joint Research
Vol. 6, Issue 10 | Pages 584 - 589
1 Oct 2017
den Teuling J Pauwels B Janssen L Wyers C Janzing HMJ van den Bergh J Morrenhof JW

Objectives. The goal of this study is to investigate the relation between indicators of osteoporosis (i.e., bone mineral density (BMD), and Cortical Index (CI)) and the complexity of a fracture of the proximal humerus as a result of a low-energy trauma. Methods. A retrospective chart review of 168 patients (mean age 67.2 years, range 51 to 88.7) with a fracture of the proximal humerus between 2007 and 2011, whose BMD was assessed at the Fracture Liaison Service with Dual Energy X-ray Absorptiometry (DXA) measurements of the hip, femoral neck (FN) and/or lumbar spine (LS), and whose CI and complexity of fracture were assessed on plain anteroposterior radiographs of the proximal humerus. Results. No significant differences were found between simple and complex fractures of the proximal humerus in the BMD of the hip, FN or LS (all p > 0.3) or in the CI (p = 0.14). Only the body mass index was significantly higher in patients with a complex fracture compared with those with a simple fracture (26.9 vs 25.2; p = 0.05). Conclusion. There was no difference in BMD of the hip, FN, LS or CI of the proximal humerus in simple compared with complex fractures of the proximal humerus after a low-energy trauma. Factors other than the BMD and CI, for example body mass index, may play a more important role in the complexity of this fracture. Cite this article: J.W.A.M. den Teuling, B.S. Pauwels, L. Janssen, C.E. Wyers, H. M. J. Janzing, J.P.W. van den Bergh, J. W. Morrenhof. The Influence of bone mineral density and cortical index on the complexity of fractures of the proximal humerus. Bone Joint Res 2017;6:584–589. DOI: 10.1302/2046-3758.610.BJR-2017-0080


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 978 - 985
1 Sep 2024
Savoie III FH Delvadia BP Tate JP Winter JE Williams GH Sherman WF O’Brien MJ

Rotator cuff tears are common in middle-aged and elderly patients. Despite advances in the surgical repair of rotator cuff tears, the rates of recurrent tear remain high. This may be due to the complexity of the tendons of the rotator cuff, which contributes to an inherently hostile healing environment. During the past 20 years, there has been an increased interest in the use of biologics to complement the healing environment in the shoulder, in order to improve rotator cuff healing and reduce the rate of recurrent tears. The aim of this review is to provide a summary of the current evidence for the use of forms of biological augmentation when repairing rotator cuff tears.

Cite this article: Bone Joint J 2024;106-B(9):978–985.


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1629 - 1635
1 Dec 2020
Wang Q Sheng N Rui B Chen Y

Aims

The aim of this study was to explore why some calcar screws are malpositioned when a proximal humeral fracture is treated by internal fixation with a locking plate, and to identify risk factors for this phenomenon. Some suggestions can be made of ways to avoid this error.

Methods

We retrospectively identified all proximal humeral fractures treated in our institution between October 2016 and October 2018 using the hospital information system. The patients’ medical and radiological data were collected, and we divided potential risk factors into two groups: preoperative factors and intraoperative factors. Preoperative factors included age, sex, height, weight, body mass index, proximal humeral bone mineral density, type of fracture, the condition of the medial hinge, and medial metaphyseal head extension. Intraoperative factors included the grade of surgeon, neck-shaft angle after reduction, humeral head height, restoration of medial support, and quality of reduction. Adjusted binary logistic regression and multivariate logistic regression models were used to identify pre- and intraoperative risk factors. Area under the curve (AUC) analysis was used to evaluate the discriminative ability of the multivariable model.


Objectives

This investigation sought to advance the work published in our prior biomechanical study (Journal of Orthopaedic Research, 2016). We specifically sought to determine whether there are additional easy-to-measure parameters on plain radiographs of the proximal humerus that correlate more strongly with ultimate fracture load, and whether a parameter resembling the Dorr strength/quality characterisation of proximal femurs can be applied to humeri.

Materials and Methods

A total of 33 adult humeri were used from a previous study where we quantified bone mineral density of the proximal humerus using radiographs and dual-energy x-ray absorptiometry (DEXA), and regional mean cortical thickness and cortical index using radiographs. The bones were fractured in a simulated backwards fall with the humeral head loaded at 2 mm/second via a frustum angled at 30° from the long axis of the bone. Correlations were assessed with ultimate fracture load and these new parameters: cortical index expressed in areas (“areal cortical index”) of larger regions of the diaphysis; the canal-to-calcar ratio used analogous to its application in proximal femurs; and the recently described medial cortical ratio.