Advertisement for orthosearch.org.uk
Results 1 - 20 of 1300
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 147 - 156
1 Feb 2014
Rajpura A Kendoff D Board TN

We reviewed the literature on the currently available choices of bearing surface in total hip replacement (THR). We present a detailed description of the properties of articulating surfaces review the understanding of the advantages and disadvantages of existing bearing couples. Recent technological developments in the field of polyethylene and ceramics have altered the risk of fracture and the rate of wear, although the use of metal-on-metal bearings has largely fallen out of favour, owing to concerns about reactions to metal debris. As expected, all bearing surface combinations have advantages and disadvantages. A patient-based approach is recommended, balancing the risks of different options against an individual’s functional demands. Cite this article: Bone Joint J 2014;96-B:147–56


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 808 - 816
1 Aug 2024
Hall AJ Cullinan R Alozie G Chopra S Greig L Clarke J Riches PE Walmsley P Ohly NE Holloway N

Aims. Total knee arthroplasty (TKA) with a highly congruent condylar-stabilized (CS) articulation may be advantageous due to increased stability versus cruciate-retaining (CR) designs, while mitigating the limitations of a posterior-stabilized construct. The aim was to assess ten-year implant survival and functional outcomes of a cemented single-radius TKA with a CS insert, performed without posterior cruciate ligament sacrifice. Methods. This retrospective cohort study included consecutive patients undergoing TKA at a specialist centre in the UK between November 2010 and December 2012. Data were collected using a bespoke electronic database and cross-referenced with national arthroplasty audit data, with variables including: preoperative characteristics, intraoperative factors, complications, and mortality status. Patient-reported outcome measures (PROMs) were collected by a specialist research team at ten years post-surgery. There were 536 TKAs, of which 308/536 (57.5%) were in female patients. The mean age was 69.0 years (95% CI 45.0 to 88.0), the mean BMI was 32.2 kg/m. 2. (95% CI 18.9 to 50.2), and 387/536 (72.2%) survived to ten years. There were four revisions (0.7%): two deep infections (requiring debridement and implant retention), one aseptic loosening, and one haemosiderosis. Results. Kaplan-Meier analysis demonstrated no difference in implant survival according to sex, age, or obesity status. Ten-year PROMs were available for 196/387 (50.6%) surviving patients and were excellent: mean Oxford Knee Score 34.4 (95% CI 32.7 to 36.1); mean Forgotten Joint Score (FJS) 51.2 (95% CI 16.1 to 86.3); mean EuroQol five-dimension five-level questionnaire score 69.9 (95% CI 46.8 to 93.0); 141/196 (71.9%) achieved the 22-point FJS patient-acceptable symptom state (PASS); and 156/196 (79.6%) were “very satisfied or satisfied”. Conclusion. This is the only large study reporting ten-year implant survival and functional outcomes of TKA using a cemented single-radius design and with a CS tibial bearing construct. The findings of excellent implant survival, safety, and functional outcomes indicate that this combination is a safe and effective option in routine TKA. Further investigation of this single-radius design TKA with CS tibial bearings with well-matched patient study groups will allow further insight into the performance of these implants. Cite this article: Bone Joint J 2024;106-B(8):808–816


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1261 - 1269
1 Jul 2021
Burger JA Zuiderbaan HA Sierevelt IN van Steenbergen L Nolte PA Pearle AD Kerkhoffs GMMJ

Aims. Uncemented mobile bearing designs in medial unicompartmental knee arthroplasty (UKA) have seen an increase over the last decade. However, there are a lack of large-scale studies comparing survivorship of these specific designs to commonly used cemented mobile and fixed bearing designs. The aim of this study was to evaluate the survivorship of these designs. Methods. A total of 21,610 medial UKAs from 2007 to 2018 were selected from the Dutch Arthroplasty Register. Multivariate Cox regression analyses were used to compare uncemented mobile bearings with cemented mobile and fixed bearings. Adjustments were made for patient and surgical factors, with their interactions being considered. Reasons and type of revision in the first two years after surgery were assessed. Results. In hospitals performing less than 100 cases per year, cemented mobile bearings reported comparable adjusted risks of revision as uncemented mobile bearings. However, in hospitals performing more than 100 cases per year, the adjusted risk of revision was higher for cemented mobile bearings compared to uncemented mobile bearings (hazard ratio 1.78 (95% confidence interval 1.34 to 2.35)). The adjusted risk of revision between cemented fixed bearing and uncemented mobile bearing was comparable, independent of annual hospital volume. In addition, 12.3% of uncemented mobile bearing, 20.3% of cemented mobile bearing, and 41.5% of uncemented fixed bearing revisions were for tibial component loosening. The figures for instability were 23.6%, 14.5% and 11.7%, respectively, and for periprosthetic fractures were 10.0%, 2.8%, and 3.5%. Bearing exchange was the type of revision in 40% of uncemented mobile bearing, 24.3% of cemented mobile bearing, and 5.3% cemented fixed bearing revisions. Conclusion. The findings of this study demonstrated improved survival with use of uncemented compared to cemented mobile bearings in medial UKA, only in those hospitals performing more than 100 cases per year. Cemented fixed bearings reported comparable survival results as uncemented mobile bearings, regardless of the annual hospital volume. The high rates of instability, periprosthetic fractures, and bearing exchange in uncemented mobile bearings emphasize the need for further research. Cite this article: Bone Joint J 2021;103-B(7):1261–1269


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 12 - 19
1 Jan 2010
Vendittoli P Roy A Mottard S Girard J Lusignan D Lavigne M

We have updated our previous randomised controlled trial comparing release of chromium (Cr) and cobalt (Co) ions and included levels of titanium (Ti) ions. We have compared the findings from 28 mm metal-on-metal total hip replacement, performed using titanium CLS/Spotorno femoral components and titanium AlloFit acetabular components with Metasul bearings, with Durom hip resurfacing using a Metasul articulation or bearing and a titanium plasma-sprayed coating for fixation of the acetabular component. Although significantly higher blood ion levels of Cr and Co were observed at three months in the resurfaced group than in total hip replacement, no significant difference was found at two years post-operatively for Cr, 1.58 μg/L and 1.62 μg/L respectively (p = 0.819) and for Co, 0.67 μg/L and 0.94 μg/L respectively (p = 0.207). A steady state was reached at one year in the resurfaced group and after three months in the total hip replacement group. Interestingly, Ti, which is not part of the bearing surfaces with its release resulting from metal corrosion, had significantly elevated ion levels after implantation in both groups. The hip resurfacing group had significantly higher Ti levels than the total hip replacement group for all periods of follow-up. At two years the mean blood levels of Ti ions were 1.87 μg/L in hip resurfacing and and 1.30 μg/L in total hip replacement (p = 0.001). The study confirms even with different bearing diameters and clearances, hip replacement and 28 mm metal-on-metal total hip replacement produced similar Cr and Co metal ion levels in this randomised controlled trial study design, but apart from wear on bearing surfaces, passive corrosion of exposed metallic surfaces is a factor which influences ion concentrations. Ti plasma spray coating the acetabular components for hip resurfacing produces significantly higher release of Ti than Ti grit-blasted surfaces in total hip replacement


Bone & Joint Research
Vol. 8, Issue 11 | Pages 535 - 543
1 Nov 2019
Mohammad HR Campi S Kennedy JA Judge A Murray DW Mellon SJ

Objectives. The aim of this study was to determine the polyethylene wear rate of Phase 3 Oxford Unicompartmental Knee Replacement bearings and to investigate the effects of resin type and manufacturing process. Methods. A total of 63 patients with at least ten years’ follow-up with three bearing types (1900 resin machined, 1050 resin machined, and 1050 resin moulded) were recruited. Patients underwent full weight-bearing model-based radiostereometric analysis to determine the bearing thickness. The linear wear rate was estimated from the change in thickness divided by the duration of implantation. Results. The wear rate for 1900 resin machined (n = 19), 1050 machined (n = 21), and 1050 moulded bearings (n = 23) were 60 µm/year (. sd. 42), 76 µm/year (. sd. 32), and 57 µm/year (. sd. 30), respectively. There was no significant difference between 1900 machined and 1050 machined (p = 0.20), but 1050 moulded had significantly less wear than the 1050 machined (p = 0.05). Increasing femoral (p < 0.001) and tibial (p < 0.001) component size were associated with increasing wear. Conclusion. Wear rate is similar with 1050 and 1900 resin, but lower with moulded bearings than machined bearings. The currently used Phase 3 bearings wear rate is low (1050 moulded, 57 µm/year), but higher than the previously reported Phase 2 bearings (1900 moulded, 20 µm/year). This is unlikely to be due to the change in polyethylene but may relate to the minimally invasive approach used with the Phase 3. This approach, as well as improving function and thus increasing activity levels, may increase the risk of surgical errors, such as impingement or bearing overhang, which can increase wear. Surgeons should aim to use 4 mm thick bearings rather than 3 mm thick bearings in young patients, unless they are small and need conservative bone resections. Cite this article: Bone Joint Res 2019;8:535–543


The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 1012 - 1019
1 Aug 2017
Howard DP Wall PDH Fernandez MA Parsons H Howard PW

Aims. Ceramic-on-ceramic (CoC) bearings in total hip arthroplasty (THA) are commonly used, but concerns exist regarding ceramic fracture. This study aims to report the risk of revision for fracture of modern CoC bearings and identify factors that might influence this risk, using data from the National Joint Registry (NJR) for England, Wales, Northern Ireland and the Isle of Man. Patients and Methods. We analysed data on 223 362 bearings from 111 681 primary CoC THAs and 182 linked revisions for bearing fracture recorded in the NJR. We used implant codes to identify ceramic bearing composition and generated Kaplan-Meier estimates for implant survivorship. Logistic regression analyses were performed for implant size and patient specific variables to determine any associated risks for revision. Results. A total of 222 852 bearings (99.8%) were CeramTec Biolox products. Revisions for fracture were linked to seven of 79 442 (0.009%) Biolox Delta heads, 38 of 31 982 (0.119%) Biolox Forte heads, 101 of 80 170 (0.126%) Biolox Delta liners and 35 of 31 258 (0.112%) Biolox Forte liners. Regression analysis of implant size revealed smaller heads had significantly higher odds of fracture (chi-squared 68.0, p < 0.001). The highest fracture risk was observed in the 28 mm Biolox Forte subgroup (0.382%). There were no fractures in the 40 mm head group for either ceramic type. Liner thickness was not predictive of fracture (p = 0.67). Body mass index (BMI) was independently associated with revision for both head fractures (odds ratio (OR) 1.09 per unit increase, p = 0.031) and liner fractures (OR 1.06 per unit increase, p = 0.006). . Conclusions. We report the largest independent study of CoC bearing fractures to date. The risk of revision for CoC bearing fracture is very low but previous studies have underestimated this risk. There is good evidence that the latest generation of ceramic has greatly reduced the odds of head fracture but not of liner fracture. Small head size and high patient BMI are associated with an increased risk of ceramic bearing fracture. Cite this article: Bone Joint J 2017;99-B:1012–19


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 105 - 111
1 Jul 2020
Engh, Jr. CA McAsey CJ Cororaton AD Ho H Hopper, Jr. RH

Aims. The purpose of this study is to examine six types of bearing surfaces implanted at a single institution over three decades to determine whether the reasons for revision vary among the groups and how long it takes to identify differences in survival. Methods. We considered six cohorts that included a total of 1,707 primary hips done between 1982 and 2010. These included 223 conventional polyethylene sterilized with γ irradiation in air (CPE-GA), 114 conventional polyethylene sterilized with gas plasma (CPE-GP), 116 crosslinked polyethylene (XLPE), 1,083 metal-on-metal (MOM), 90 ceramic-on-ceramic (COC), and 81 surface arthroplasties (SAs). With the exception of the COC, all other groups used cobalt-chromium (CoCr) femoral heads. The mean follow-up was 10 (0.008 to 35) years. Descriptive statistics with revisions per 100 component years (re/100 yr) and survival analysis with revision for any reason as the endpoint were used to compare bearing surfaces. Results. XLPE liners demonstrated a lower cumulative incidence of revision at 15 years compared to the CPE-GA and CPE-GP groups owing to the absence of wear-related revisions (4% for XLPE vs 18%, p = 0.02, and 15%, p = 0.003, respectively). Revisions for adverse local tissue reactions occurred exclusively among the MOM (0.8 re/100 year) and SA groups (0.1 re/100 year). The revision rate for instability was lower among hips with 36 mm and larger head sizes compared to smaller head sizes (0.2% vs 2%, p < 0.001). Conclusion. The introduction of XLPE has eliminated wear-related revisions through 15-year follow-up compared to CPE-GP and CPE-GA. Dislocation incidence has been reduced with the introduction of larger diameter heads but remains a persistent concern. The potential for adverse local tissue reactions with MOM requires continued follow-up. Cite this article: Bone Joint J 2020;102-B(7 Supple B):105–111


The Bone & Joint Journal
Vol. 100-B, Issue 2 | Pages 134 - 142
1 Feb 2018
Hexter AT Hislop SM Blunn GW Liddle AD

Aims. Periprosthetic joint infection (PJI) is a serious complication of total hip arthroplasty (THA). Different bearing surface materials have different surface properties and it has been suggested that the choice of bearing surface may influence the risk of PJI after THA. The objective of this meta-analysis was to compare the rate of PJI between metal-on-polyethylene (MoP), ceramic-on-polyethylene (CoP), and ceramic-on-ceramic (CoC) bearings. Patients and Methods. Electronic databases (Medline, Embase, Cochrane library, Web of Science, and Cumulative Index of Nursing and Allied Health Literature) were searched for comparative randomized and observational studies that reported the incidence of PJI for different bearing surfaces. Two investigators independently reviewed studies for eligibility, evaluated risk of bias, and performed data extraction. Meta-analysis was performed using the Mantel–Haenzel method and random-effects model in accordance with methods of the Cochrane group. Results. Our search strategy revealed 2272 studies, of which 17 met the inclusion criteria and were analyzed. These comprised 11 randomized controlled trials and six observational studies. The overall quality of included studies was high but the observational studies were at high risk of bias due to inadequate adjustment for confounding factors. The overall cumulative incidence of PJI across all studies was 0.78% (1514/193 378). For each bearing combination, the overall incidence was as follows: MoP 0.85% (1353/158 430); CoP 0.38% (67/17 489); and CoC 0.53% (94/17 459). The meta-analysis showed no significant difference between the three bearing combinations in terms of risk of PJI. Conclusion. On the basis of the clinical studies available, there is no evidence that bearing choice influences the risk of PJI. Future research, including basic science studies and large, adequately controlled registry studies, may be helpful in determining whether implant materials play a role in determining the risk of PJI following arthroplasty surgery. Cite this article: Bone Joint J 2018;100-B:134–42


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 636 - 642
1 May 2013
Gøthesen Ø Espehaug B Havelin L Petursson G Lygre S Ellison P Hallan G Furnes O

We evaluated the rates of survival and cause of revision of seven different brands of cemented primary total knee replacement (TKR) in the Norwegian Arthroplasty Register during the years 1994 to 2009. Revision for any cause, including resurfacing of the patella, was the primary endpoint. Specific causes of revision were secondary outcomes. Three posterior cruciate-retaining (PCR) fixed modular-bearing TKRs, two fixed non-modular bearing PCR TKRs and two mobile-bearing posterior cruciate-sacrificing TKRs were investigated in a total of 17 782 primary TKRs. The median follow-up for the implants ranged from 1.8 to 6.9 years. Kaplan-Meier 10-year survival ranged from 89.5% to 95.3%. Cox’s relative risk (RR) was calculated relative to the fixed modular-bearing Profix knee (the most frequently used TKR in Norway), and ranged from 1.1 to 2.6. The risk of revision for aseptic tibial loosening was higher in the mobile-bearing LCS Classic (RR 6.8 (95% confidence interval (CI) 3.8 to 12.1)), the LCS Complete (RR 7.7 (95% CI 4.1 to 14.4)), the fixed modular-bearing Duracon (RR 4.5 (95% CI 1.8 to 11.1)) and the fixed non-modular bearing AGC Universal TKR (RR 2.5 (95% CI 1.3 to 5.1)), compared with the Profix. These implants (except AGC Universal) also had an increased risk of revision for femoral loosening (RR 2.3 (95% CI 1.1 to 4.8), RR 3.7 (95% CI 1.6 to 8.9), and RR 3.4 (95% CI 1.1 to 11.0), respectively). These results suggest that aseptic loosening is related to design in TKR. Cite this article: Bone Joint J 2013;95-B:636–42


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 137 - 144
1 Jun 2021
Lachiewicz PF Steele JR Wellman SS

Aims. To establish our early clinical results of a new total knee arthroplasty (TKA) tibial component introduced in 2013 and compare it to other designs in use at our hospital during the same period. Methods. This is a retrospective study of 166 (154 patients) consecutive cemented, fixed bearing, posterior-stabilized (PS) TKAs (ATTUNE) at one hospital performed by five surgeons. These were compared with a reference cohort of 511 knees (470 patients) of other designs (seven manufacturers) performed at the same hospital by the same surgeons. There were no significant differences in age, sex, BMI, or follow-up times between the two cohorts. The primary outcome was revision performed or pending. Results. In total, 19 (11.5%) ATTUNE study TKAs have been revised at a mean 30.3 months (SD 15), and loosening of the tibial component was seen in 17 of these (90%). Revision is pending in 12 (7%) knees. There was no difference between the 31 knees revised or with revision pending and the remaining 135 study knees in terms of patient characteristics, type of bone cement (p = 0.988), or individual surgeon (p = 0.550). In the reference cohort, there were significantly fewer knees revised (n = 13, 2.6%) and with revision pending (n = 8, 1.5%) (both p < 0.001), and only two had loosening of the tibial component as the reason for revision. Conclusion. This new TKA design had an unexpectedly high early rate of revision compared with our reference cohort of TKAs. Debonding of the tibial component was the most common reason for failure. Additional longer-term follow-up studies of this specific component and techniques for implantation are warranted. The version of the ATTUNE tibial component implanted in this study has undergone modifications by the manufacturer. Cite this article: Bone Joint J 2021;103-B(6 Supple A):137–144


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 403 - 406
1 Apr 2020
Trompeter A


Bone & Joint Research
Vol. 9, Issue 6 | Pages 272 - 278
1 Jun 2020
Tapasvi S Shekhar A Patil S Pandit H

Aims. The mobile bearing Oxford unicompartmental knee arthroplasty (OUKA) is recommended to be performed with the leg in the hanging leg (HL) position, and the thigh placed in a stirrup. This comparative cadaveric study assesses implant positioning and intraoperative kinematics of OUKA implanted either in the HL position or in the supine leg (SL) position. Methods. A total of 16 fresh-frozen knees in eight human cadavers, without macroscopic anatomical defects, were selected. The knees from each cadaver were randomized to have the OUKA implanted in the HL or SL position. Results. Tibial base plate rotation was significantly more variable in the SL group with 75% of tibiae mal-rotated. Multivariate analysis of navigation data found no difference based on all kinematic parameters across the range of motion (ROM). However, area under the curve analysis showed that knees placed in the HL position had much smaller differences between the pre- and post-surgery conditions for kinematics mean values across the entire ROM. Conclusion. The sagittal tibia cut, not dependent on standard instrumentation, determines the tibial component rotation. The HL position improves accuracy of this step compared to the SL position, probably due to better visuospatial orientation of the hip and knee to the surgeon. The HL position is better for replicating native kinematics of the knee as shown by the area under the curve analysis. In the supine knee position, care must be taken during the sagittal tibia cut, while checking flexion balance and when sizing the tibial component


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1298 - 1303
1 Oct 2017
Schouten R Malone AA Frampton CM Tiffen C Hooper G

Aims . The primary aim of this independent prospective randomised trial was to compare serum metal ion levels for ceramic-on-metal (CoM) and metal-on-metal (MoM) bearing surfaces in total hip arthroplasty (THA). Our one-year results demonstrated elevation in metal ion levels above baseline with no significant difference between the CoM and MoM groups. This paper reviews the five-year data. Patients and Methods. The implants used in each patient differed only in respect to the type of femoral head (ceramic or metal). At five-year follow-up of the 83 enrolled patients, data from 67 (36 CoM, 31 MoM) was available for comparison. Results. The mean serum cobalt (Co) and chromium (Cr) ion levels remained above baseline in both groups (CoM: Co 1.16 μg/l (0.41 to 14.67), Cr 1.05 μg/l (0.16 to 12.58); MoM: Co 2.93 μg/l (0.35 to 30.29), Cr 1.85 μg/l (0.36 to 17.00)) but the increase was significantly less in the CoM cohort (Co difference p = 0.001, Cr difference p = 0.002). These medium-term results, coupled with lower revision rates from national joint registries, suggest that the performance of CoM THA may be superior to that of MoM. . Conclusion. While both bearing combinations have since been withdrawn these results provide useful information for planning clinical surveillance of CoM THAs and warrants continued monitoring. Cite this article: Bone Joint J 2017;99-B:1298–1303


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 925 - 933
1 Jul 2016
Sidaginamale RP Joyce TJ Bowsher JG Lord JK Avery PJ Natu S Nargol AVF Langton DJ

Aims. We wished to investigate the influence of metal debris exposure on the subsequent immune response and resulting soft-tissue injury following metal-on-metal (MoM) hip arthroplasty. Some reports have suggested that debris generated from the head-neck taper junction is more destructive than equivalent doses from metal bearing surfaces. . Patients and Methods. We investigated the influence of the source and volume of metal debris on chromium (Cr) and cobalt (Co) concentrations in corresponding blood and hip synovial fluid samples and the observed agglomerated particle sizes in excised tissues using multiple regression analysis of prospectively collected data. A total of 199 explanted MoM hips (177 patients; 132 hips female) were analysed to determine rates of volumetric wear at the bearing surfaces and taper junctions. . Results. The statistical modelling suggested that a greater source contribution of metal debris from the taper junction was associated with smaller aggregated particle sizes in the local tissues and a relative reduction of Cr ion concentrations in the corresponding synovial fluid and blood samples. Metal debris generated from taper junctions appears to be of a different morphology, composition and therefore, potentially, immunogenicity to that generated from bearing surfaces. Conclusion. The differences in debris arising from the taper and the articulating surfaces may provide some understanding of the increased incidence of soft-tissue reactions reported in patients implanted with MoM total hip arthroplasties compared with patients with hip resurfacings. Cite this article: Bone Joint J 2016;98-B:925–33


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 914 - 922
1 Jul 2014
Lee SY Bae JH Kim JG Jang KM Shon WY Kim KW Lim HC

The aim of this study was to evaluate the risk factors for dislocation of the bearing after a mobile-bearing Oxford medial unicompartmental knee replacement (UKR) and to test the hypothesis that surgical factors, as measured from post-operative radiographs, are associated with its dislocation. From a total of 480 UKRs performed between 2001 and 2012, in 391 patients with a mean age of 66.5 years (45 to 82) (316 female, 75 male), we identified 17 UKRs where bearing dislocation occurred. The post-operative radiological measurements of the 17 UKRs and 51 matched controls were analysed using conditional logistic regression analysis. The post-operative radiological measurements included post-operative change in limb alignment, the position of the femoral and tibial components, the resection depth of the proximal tibia, and the femoral component-posterior condyle classification. We concluded that a post-operative decrease in the posterior tibial slope relative to the pre-operative value was the only significant determinant of dislocation of the bearing after medial Oxford UKR (odds ratio 1.881; 95% confidence interval 1.272 to 2.779). A post-operative posterior tibial slope < 8.45° and a difference between the pre-operative and post-operative posterior tibial slope of > 2.19° may increase the risk of dislocation. Cite this article: Bone Joint J 2014; 96-B:914–22


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 844 - 851
1 Jul 2022
Rogmark C Nåtman J Jobory A Hailer NP Cnudde P

Aims

Patients with femoral neck fractures (FNFs) treated with total hip arthroplasty (THA) have an almost ten-fold increased risk of dislocation compared to patients undergoing elective THA. The surgical approach influences the risk of dislocation. To date, the influence of differing head sizes and dual-mobility components (DMCs) on the risk of dislocation has not been well studied.

Methods

In an observational cohort study on 8,031 FNF patients with THA between January 2005 and December 2014, Swedish Arthroplasty Register data were linked with the National Patient Register, recording the total dislocation rates at one year and revision rates at three years after surgery. The cumulative incidence of events was estimated using the Kaplan-Meier method. Cox multivariable regression models were fitted to calculate adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) for the risk of dislocation, revision, or mortality, stratified by surgical approach.


Aims. Mobile-bearing unicompartmental knee arthroplasty (UKA) with a flat tibial plateau has not performed well in the lateral compartment, leading to a high rate of dislocation. For this reason, the Domed Lateral UKA with a biconcave bearing was developed. However, medial and lateral tibial plateaus have asymmetric anatomical geometries, with a slightly dished medial and a convex lateral plateau. Therefore, the aim of this study was to evaluate the extent at which the normal knee kinematics were restored with different tibial insert designs using computational simulation. Methods. We developed three different tibial inserts having flat, conforming, and anatomy-mimetic superior surfaces, whereas the inferior surface in all was designed to be concave to prevent dislocation. Kinematics from four male subjects and one female subject were compared under deep knee bend activity. Results. The conforming design showed significantly different kinematics in femoral rollback and internal rotation compared to that of the intact knee. The flat design showed significantly different kinematics in femoral rotation during high flexion. The anatomy-mimetic design preserved normal knee kinematics in femoral rollback and internal rotation. Conclusion. The anatomy-mimetic design in lateral mobile UKA demonstrated restoration of normal knee kinematics. Such design may allow achievement of the long sought normal knee characteristics post-lateral mobile UKA. However, further in vivo and clinical studies are required to determine whether this design can truly achieve a more normal feeling of the knee and improved patient satisfaction. Cite this article: Bone Joint Res 2020;9(7):421–428


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1448 - 1453
1 Nov 2009
Sexton SA Walter WL Jackson MP De Steiger R Stanford T

Dislocation is a common reason for revision following total hip replacement. This study investigated the relationship between the bearing surface and the risk of revision due to dislocation. It was based on 110 239 primary total hip replacements with a diagnosis of osteoarthritis collected by the Australian Orthopaedic Association National Joint Replacement Registry between September 1999 and December 2007. A total of 862 (0.78%) were revised because of dislocation. Ceramic-on-ceramic bearing surfaces had a lower risk of requiring revision due to dislocation than did metal-on-polyethylene and ceramic-on-polyethylene surfaces, with a follow-up of up to seven years. However, ceramic-on-ceramic implants were more likely to have larger prosthetic heads and to have been implanted in younger patients. The size of the head of the femoral component and age are known to be independent predictors of dislocation. Therefore, the outcomes were stratified by the size of the head and age. There is a significantly higher rate of revision for dislocation in ceramic-on-ceramic bearing surfaces than in metal-on-polyethylene implants when smaller sizes (≤ 28 mm) of the head were used in younger patients (< 65 years) (hazard ratio = 1.53, p = 0.041) and also with larger (> 28 mm) and in older patients (≥ 65 years) (hazard ratio = 1.73, p = 0.016)


The Bone & Joint Journal
Vol. 97-B, Issue 9 | Pages 1197 - 1203
1 Sep 2015
Kim Y Park J Kim J

A number of studies have reported satisfactory results from the isolated revision of an acetabular component. However, many of these studies reported only the short- to intermediate-term results of heterogeneous bearing surfaces in a mixed age group. We present our experience of using a ceramic-on-ceramic (CoC) bearing for isolated revision of an uncemented acetabular component in 166 patients (187 hips) who were under the age of 50 years at the time of revision. There were 78 men and 88 women with a mean age of 47.4 years (28 to 49). The most common reason for revision was polyethylene wear and acetabular osteolysis in 123 hips (66%), followed by aseptic loosening in 49 hips (26%). . We report the clinical and radiological outcome, complication rate, and survivorship of this group. The mean duration of follow-up was 15.6 years (11 to 19). . The mean pre-operative Harris hip score was 33 points (1 to 58), and improved to a mean of 88 points (51 to 100) at follow-up. The mean pre-operative total Western Ontario and McMaster Universities Osteoarthritis Index score was 63.2 (43 to 91) and improved to 19.8 points (9 to 61) post-operatively. Overall, 153 of 166 patients (92%) were satisfied with their outcome. Kaplan–Meier survivorship analysis, with revision or radiological evidence of implant failure (13 patients, 8%) as end-points, was 92% at 15 years (95% confidence interval 0.89 to 0.97). . Isolated revision of a cementless acetabular component using a CoC bearing gives good results in patients under 50 years of age. Cite this article: Bone Joint J 2015;97-B:1197–1203


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1493 - 1497
1 Nov 2005
Price AJ Short A Kellett C Beard D Gill H Pandit H Dodd CAF Murray DW

Polyethylene particulate wear debris continues to be implicated in the aetiology of aseptic loosening following knee arthroplasty. The Oxford unicompartmental knee arthroplasty employs a spherical femoral component and a fully congruous meniscal bearing to increase contact area and theoretically reduce the potential for polyethylene wear. This study measures the in vivo ten-year linear wear of the device, using a roentgenstereophotogrammetric technique. In this in vivo study, seven medial Oxford unicompartmental prostheses, which had been implanted ten years previously were studied. Stereo pairs of radiographs were acquired for each patient and the films were analysed using a roentgen stereophotogrammetric analysis calibration and a computer-aided design model silhouette-fitting technique. Penetration of the femoral component into the original volume of the bearing was our estimate of linear wear. In addition, eight control patients were examined less than three weeks post-insertion of an Oxford prosthesis, where no wear would be expected. The control group showed no measured wear and suggested a system accuracy of 0.1 mm. At ten years, the mean linear wear rate was 0.02 mm/year. The results from this in vivo study confirm that the device has low ten-year linear wear in clinical practice. This may offer the device a survival advantage in the long term