Objectives. The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness
Objectives. The lack of effective treatment for
Objectives. Previously, we reported the improved transfection efficiency of a plasmid DNA-chitosan (pDNA-CS) complex using a phosphorylatable nuclear localization signal-linked nucleic kinase substrate short peptide (pNNS) conjugated to chitosan (pNNS-CS). This study investigated the effects of pNNS-CS-mediated miR-140 and interleukin-1 receptor antagonist protein (IL-1Ra) gene transfection both in rabbit chondrocytes and a
Microfracture is frequently used as the first line of treatment for the repair of traumatic
We describe the outcome at a mean follow-up of 8.75 years (7.6 to 9.8) of seven patients who had undergone osteochondral autologous transplantation for full-thickness
The present study investigates the effectiveness of platelet-rich plasma (PRP) gel without adjunct to induce cartilage regeneration in large osteochondral defects in a rabbit model. A bilateral osteochondral defect was created in the femoral trochlear groove of 14 New Zealand white rabbits. The right knees were filled with PRP gel and the contralateral knees remained untreated and served as control sides. Some animals were killed at week 3 and others at week 12 postoperatively. The joints were harvested and assessed by Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) MRI scoring system, and examined using the International Cartilage Repair Society (ICRS) macroscopic and ICRS histological scoring systems. Additionally, the collagen type II content was evaluated by the immunohistochemical staining.Aims
Methods
In 16 mature New Zealand white rabbits mesenchymal stem cells were aspirated from the bone marrow, cultured in monolayer and implanted on to a full-thickness osteochondral defect artificially made on the patellar groove of the same rabbit. A further 13 rabbits served as a control group. The rabbits were killed after 14 weeks. Healing of the defect was investigated histologically using haematoxylin and eosin and Safranin-O staining and with immunohistochemical staining for type-II collagen. We also used a reverse transcription-polymerase chain reaction (RT-PCR) to detect mRNA of type-I and type-II collagen. The semiquantitative histological scores were significantly higher in the experimental group than in the control group (p <
0.05). In the experimental group immunohistochemical staining on newly formed cartilage was more intense for type-II collagen in the matrix and RT-PCR from regenerated cartilage detected mRNA for type-II collagen in mature chondrocytes. These findings suggest that repair of
We reviewed retrospectively 11 patients who had been treated surgically by open autologous osteochondral grafting for symptomatic chondral or osteochondral defects of the dome of the talus between 1996 and 1999. The mean ages of the eight men and three women were 34.2 and 25.9 years, respectively, with a mean time to follow-up of 24 months. The results of functional outcome were prospectively obtained using the MODEMS AAOS foot and ankle follow-up questionnaire, the AOFAS ankle-hindfoot scale and the Hannover scores for the ankle. The grafts were harvested from the ipsilateral knee. Good to excellent results were obtained for the ankle without adverse effects on the knee. We believe that autologous osteochondral grafting should be considered for the patient with a symptomatic osteochondral defect of the talus.
We investigated the clinical, arthroscopic and biomechanical outcome of transplanting autologous chondrocytes, cultured in atelocollagen gel, for the treatment of full-thickness
We attempted to characterise the biological quality
and regenerative potential of chondrocytes in osteochondritis dissecans
(OCD). Dissected fragments from ten patients with OCD of the knee
(mean age 27.8 years (16 to 49)) were harvested at arthroscopy.
A sample of cartilage from the intercondylar notch was taken from
the same joint and from the notch of ten patients with a traumatic
cartilage defect (mean age 31.6 years (19 to 52)). Chondrocytes
were extracted and subsequently cultured. Collagen types 1, 2, and
10 mRNA were quantified by polymerase chain reaction. Compared with
the notch chondrocytes, cells from the dissecate expressed similar
levels of collagen types 1 and 2 mRNA. The level of collagen type
10 message was 50 times lower after cell culture, indicating a loss
of hypertrophic cells or genes. The high viability, retained capacity
to differentiate and metabolic activity of the extracted cells suggests
preservation of the intrinsic repair capability of these dissecates.
Molecular analysis indicated a phenotypic modulation of the expanded
dissecate chondrocytes towards a normal phenotype. Our findings
suggest that cartilage taken from the dissecate can be reasonably
used as a cell source for chondrocyte implantation procedures.
Transforming growth factor-beta2 (TGF-β2) is recognized as a versatile cytokine that plays a vital role in regulation of joint development, homeostasis, and diseases, but its role as a biological mechanism is understood far less than that of its counterpart, TGF-β1. Cartilage as a load-resisting structure in vertebrates however displays a fragile performance when any tissue disturbance occurs, due to its lack of blood vessels, nerves, and lymphatics. Recent reports have indicated that TGF-β2 is involved in the physiological processes of chondrocytes such as proliferation, differentiation, migration, and apoptosis, and the pathological progress of cartilage such as osteoarthritis (OA) and rheumatoid arthritis (RA). TGF-β2 also shows its potent capacity in the repair of
We studied whether the presence of lateral osteophytes
on plain radiographs was a predictor for the quality of cartilage
in the lateral compartment of patients with varus osteoarthritic
of the knee (Kellgren and Lawrence grade 2 to 3). The baseline MRIs of 344 patients from the Osteoarthritis Initiative
(OAI) who had varus osteoarthritis (OA) of the knee on hip-knee-ankle
radiographs were reviewed. Patients were categorised using the Osteoarthritis
Research Society International (OARSI) osteophyte grading system
into 174 patients with grade 0 (no osteophytes), 128 grade 1 (mild
osteophytes), 28 grade 2 (moderate osteophytes) and 14 grade 3 (severe
osteophytes) in the lateral compartment (tibia). All patients had
Kellgren and Lawrence grade 2 or 3 arthritis of the medial compartment.
The thickness and volume of the lateral cartilage and the percentage
of full-thickness
Damage to the cartilage of the distal radioulnar
joint frequently leads to pain and limitation of movement, therefore repair
of this joint cartilage would be highly desirable. The purpose of
this study was to investigate the fixation of scaffold in cartilage
defects of this joint as part of matrix-assisted regenerative autologous
cartilage techniques. Two techniques of fixation of collagen scaffolds,
one involving fibrin glue alone and one with fibrin glue and sutures, were
compared in artificially created
Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury. A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm2) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations.Aims
Methods
The purpose of this study was to evaluate the mid-term outcomes of autologous matrix-induced chondrogenesis (AMIC) for the treatment of larger cartilage lesions and deformity correction in hips suffering from symptomatic femoroacetabular impingement (FAI). This single-centre study focused on a cohort of 24 patients with cam- or pincer-type FAI, full-thickness femoral or acetabular chondral lesions, or osteochondral lesions ≥ 2 cm2, who underwent surgical hip dislocation for FAI correction in combination with AMIC between March 2009 and February 2016. Baseline data were retrospectively obtained from patient files. Mid-term outcomes were prospectively collected at a follow-up in 2020: cartilage repair tissue quality was evaluated by MRI using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. Patient-reported outcome measures (PROMs) included the Oxford Hip Score (OHS) and Core Outcome Measure Index (COMI). Clinical examination included range of motion, impingement tests, and pain.Aims
Methods
Composites of chondrocytes and polymerised fibrin were supplemented with insulin-like growth factor-I (IGF-I) during the arthroscopic repair of full-thickness
Focal knee arthroplasty is an attractive alternative to knee arthroplasty for young patients because it allows preservation of a large amount of bone for potential revisions. However, the mechanical behaviour of cartilage has not yet been investigated because it is challenging to evaluate in vivo contact areas, pressure, and deformations from metal implants. Therefore, this study aimed to determine the contact pressure in the tibiofemoral joint with a focal knee arthroplasty using a finite element model. The mechanical behaviour of the cartilage surrounding a metal implant was evaluated using finite element analysis. We modelled focal knee arthroplasty with placement flush, 0.5 mm deep, or protruding 0.5 mm with regard to the level of the surrounding cartilage. We compared contact stress and pressure for bone, implant, and cartilage under static loading conditions.Aims
Methods
Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model. A total of 16 horses underwent arthroscopic repair of a single 15 mm
Autologous chondrocyte implantation (ACI) has been used most commonly as a treatment for