Despite being one of the most common injuries around the elbow, the optimal treatment of olecranon fractures is far from established and stimulates debate among both general orthopaedic trauma surgeons and upper limb specialists. It is almost universally accepted that stable non-displaced fractures can be safely treated nonoperatively with minimal specialist input. Internal fixation is recommended for the vast majority of displaced fractures, with a range of techniques and implants to choose from. However, there is concern regarding the complication rates, largely related to symptomatic metalwork resulting in high rates of implant removal. As the number of elderly patients sustaining these injuries increases, we are becoming more aware of the issues associated with fixation in osteoporotic bone and the often fragile soft-tissue envelope in this group. Given this, there is evidence to support an increasing role for nonoperative management in this high-risk demographic group, even in those presenting with displaced and/or multifragmentary fracture patterns. This review summarizes the available literature to date, focusing predominantly on the management techniques and available implants for stable fractures of the olecranon. It also offers some insights into the potential avenues for future research, in the hope of addressing some of the pertinent questions that remain unanswered. Cite this article:
Robotic-assisted total knee arthroplasty (TKA) has proven higher accuracy, fewer alignment outliers, and improved short-term clinical outcomes when compared to conventional TKA. However, evidence of cost-effectiveness and individual superiority of one system over another is the subject of further research. Despite its growing adoption rate, published results are still limited and comparative studies are scarce. This review compares characteristics and performance of five currently available systems, focusing on the information and feedback each system provides to the surgeon, what the systems allow the surgeon to modify during the operation, and how each system then aids execution of the surgical plan. Cite this article: Abstract
Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation. Cite this article:
Injuries to the hamstring muscle complex are common in athletes, accounting for between 12% and 26% of all injuries sustained during sporting activities. Acute hamstring injuries often occur during sports that involve repetitive kicking or high-speed sprinting, such as American football, soccer, rugby, and athletics. They are also common in watersports, including waterskiing and surfing. Hamstring injuries can be career-threatening in elite athletes and are associated with an estimated risk of recurrence in between 14% and 63% of patients. The variability in prognosis and treatment of the different injury patterns highlights the importance of prompt diagnosis with magnetic resonance imaging (MRI) in order to classify injuries accurately and plan the appropriate management. Low-grade hamstring injuries may be treated with nonoperative measures including pain relief, eccentric lengthening exercises, and a graduated return to sport-specific activities. Nonoperative management is associated with highly variable times for convalescence and return to a pre-injury level of sporting function. Nonoperative management of high-grade hamstring injuries is associated with poor return to baseline function, residual muscle weakness and a high-risk of recurrence. Proximal hamstring avulsion injuries, high-grade musculotendinous tears, and chronic injuries with persistent weakness or functional compromise require surgical repair to enable return to a pre-injury level of sporting function and minimize the risk of recurrent injury. This article reviews the optimal diagnostic imaging methods and common classification systems used to guide the treatment of hamstring injuries. In addition, the indications and outcomes for both nonoperative and operative treatment are analyzed to provide an evidence-based management framework for these patients. Cite this article:
Instability remains a challenging problem in both primary and
revision total hip arthroplasty (THA). Dual mobility components
confer increased stability, but there are concerns about the unique
complications associated with these designs, as well as the long-term
survivorship. We performed a systematic review of all English language articles
dealing with dual mobility THAs published between 2007 and 2016
in the MEDLINE and Embase electronic databases. A total of 54 articles
met inclusion criteria for the final analysis of primary and revision
dual mobility THAs and dual mobility THAs used in the treatment
of fractures of the femoral neck. We analysed the survivorship and
rates of aseptic loosening and of intraprosthetic and extra-articular
dislocation.Aims
Materials and Methods
Intravenous tranexamic acid (TXA) has been shown
to be effective in reducing blood loss and the need for transfusion
after joint replacement. Recently, there has been interest in applying
it topically before the closure of surgical wounds. This has the
advantages of ease of application, maximum concentration at the
site of bleeding, minimising its systemic absorption and, consequently,
concerns about possible side-effects. We conducted a systematic review and meta-analysis which included
14 randomised controlled trials (11 in knee replacement, two in
hip replacement and one in both) which investigated the effect of
topical TXA on blood loss and rates of transfusion. Topical TXA
significantly reduced the rate of blood transfusion (total knee
replacement: risk ratio (RR) 4.51; 95% confidence interval (CI):
3.02 to 6.72; p <
0.001 (nine trials, I2 = 0%); total
hip replacement: RR 2.56; 95% CI: 1.32 to 4.97, p = 0.004 (one trial)).
The rate of thromboembolic events with topical TXA were similar
to those found with a placebo. Indirect comparison of placebo-controlled
trials of topical and intravenous TXA indicates that topical administration
is superior to the intravenous route. In conclusion, topical TXA is an effective and safe method of
reducing the need for blood transfusion after total knee and hip
replacement. Further research is required to find its optimum dose
for topical use. Cite this article:
Given the growing prevalence of obesity around
the world and its association with osteoarthritis of the knee, orthopaedic
surgeons need to be familiar with the management of the obese patient
with degenerative knee pain. The precise mechanism by which obesity
leads to osteoarthritis remains unknown, but is likely to be due
to a combination of mechanical, humoral and genetic factors. Weight loss has clear medical benefits for the obese patient
and seems to be a logical way of relieving joint pain associated
with degenerative arthritis. There are a variety of ways in which
this may be done including diet and exercise, and treatment with
drugs and bariatric surgery. Whether substantial weight loss can
delay or even reverse the symptoms associated with osteoarthritis
remains to be seen. Surgery for osteoarthritis in the obese patient can be technically
more challenging and carries a risk of additional complications.
Substantial weight loss before undertaking total knee replacement
is advisable. More prospective studies that evaluate the effect
of significant weight loss on the evolution of symptomatic osteoarthritis
of the knee are needed so that orthopaedic surgeons can treat this
patient group appropriately.