Objectives. To investigate the differences of open reduction and internal
fixation (ORIF) of complex AO Type C distal radius fractures between
two different models of a single implant type. Methods. A total of 136 patients who received either a 2.4 mm (n = 61)
or 3.5 mm (n = 75) distal radius locking compression plate (LCP
DR) using a volar approach were followed over two years. The main
outcome measurements included motion, grip strength, pain, and the
scores of Gartland and Werley, the Short-Form 36 (SF-36) and the
Disabilities of the Arm, Shoulder, and Hand (DASH). Differences
between the treatment groups were evaluated using regression analysis
and the likelihood ratio test with significance based on the Bonferroni
corrected p-value of <
0.003. Results. The groups were similar with respect to baseline and injury characteristics
as well as general surgical details. The risk of experiencing a
complication after ORIF with a
Objectives. External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF). Methods. A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness. Results. The mean axial stiffness was very similar for UEF (528 N/mm) and ESS-LCP (525 N/mm), while it was slightly lower for ET-LCP (469 N/mm). One-way analysis of variance (ANOVA) testing in all three groups demonstrated no significant difference (F(2,12) = 2.057, p = 0.171). There was a significant difference in mean torsional stiffness between the UEF (0.512 Nm/degree), the ESS-LCP (0.686 Nm/degree) and the ET-LCP (0.639 Nm/degree), as determined by one-way ANOVA (F(2,12) = 6.204, p = 0.014). A Tukey post hoc test revealed that the torsional stiffness of the ESS-LCP was statistically higher than that of the UEF by 0.174 Nm/degree (p = 0.013). No catastrophic failures were observed. Conclusion. Using the
Objectives. We aimed to further evaluate the biomechanical characteristics
of two locking screws versus three standard bicortical
screws in synthetic models of normal and osteoporotic bone. Methods. Synthetic tubular bone models representing normal bone density
and osteoporotic bone density were used. Artificial fracture gaps
of 1 cm were created in each specimen before fixation with one of
two constructs: 1) two locking screws using a five-hole locking
compression plate (LCP) plate; or 2) three non-locking screws with
a seven-hole
Several previously identified patient-, injury-, and treatment-related factors are associated with the development of nonunion in distal femur fractures. However, the predictive value of these factors is not well defined. We aimed to assess the predictive ability of previously identified risk factors in the development of nonunion leading to secondary surgery in distal femur fractures. We conducted a retrospective cohort study of adult patients with traumatic distal femur fracture treated with lateral locking plate between 2009 and 2018. The patients who underwent secondary surgery due to fracture healing problem or plate failure were considered having nonunion. Background knowledge of risk factors of distal femur fracture nonunion based on previous literature was used to form an initial set of variables. A logistic regression model was used with previously identified patient- and injury-related variables (age, sex, BMI, diabetes, smoking, periprosthetic fracture, open fracture, trauma energy, fracture zone length, fracture comminution, medial side comminution) in the first analysis and with treatment-related variables (different surgeon-controlled factors, e.g. plate length, screw placement, and proximal fixation) in the second analysis to predict the nonunion leading to secondary surgery in distal femur fractures.Aims
Methods
Postoperative malalignment of the femur is one of the main complications in distal femur fractures. Few papers have investigated the impact of intraoperative malalignment on postoperative function and bone healing outcomes. The aim of this study was to investigate how intraoperative fracture malalignment affects postoperative bone healing and functional outcomes. In total, 140 patients were retrospectively identified from data obtained from a database of hospitals participating in a trauma research group. We divided them into two groups according to coronal plane malalignment of more than 5°: 108 had satisfactory fracture alignment (< 5°, group S), and 32 had unsatisfactory alignment (> 5°, group U). Patient characteristics and injury-related factors were recorded. We compared the rates of nonunion, implant failure, and reoperation as healing outcomes and Knee Society Score (KSS) at three, six, and 12 months as functional outcomes. We also performed a sub-analysis to assess the effect of fracture malalignment by plates and nails on postoperative outcomes.Aims
Methods
Femoral periprosthetic fractures are rising in incidence. Their management is complex and carries a high associated mortality. Unlike native hip fractures, there are no guidelines advising on time to theatre in this group. We aim to determine whether delaying surgical intervention influences morbidity or mortality in femoral periprosthetic fractures. We identified all periprosthetic fractures around a hip or knee arthroplasty from our prospectively collated database between 2012 and 2021. Patients were categorized into early or delayed intervention based on time from admission to surgery (early = ≤ 36 hours, delayed > 36 hours). Patient demographics, existing implants, Unified Classification System fracture subtype, acute medical issues on admission, preoperative haemoglobin, blood transfusion requirement, and length of hospital stay were identified for all patients. Complication and mortality rates were compared between groups.Aims
Methods
Despite limited clinical scientific backing, an additional trochanteric stabilizing plate (TSP) has been advocated when treating unstable trochanteric fractures with a sliding hip screw (SHS). We aimed to explore whether the TSP would result in less post operative fracture motion, compared to SHS alone. Overall, 31 patients with AO/OTA 31-A2 trochanteric fractures were randomized to either a SHS alone or a SHS with an additional TSP. To compare postoperative fracture motion, radiostereometric analysis (RSA) was performed before and after weightbearing, and then at four, eight, 12, 26, and 52 weeks. With the “after weightbearing” images as baseline, we calculated translations and rotations, including shortening and medialization of the femoral shaft.Aims
Methods
Osteopetrosis (OP) is a rare hereditary disease that causes reduced bone resorption and increased bone density as a result of osteoclastic function defect. Our aim is to review the difficulties, mid-term follow-up results, and literature encountered during the treatment of OP. This is a retrospective and observational study containing data from nine patients with a mean age of 14.1 years (9 to 25; three female, six male) with OP who were treated in our hospital between April 2008 and October 2018 with 20 surgical procedures due to 17 different fractures. Patient data included age, sex, operating time, length of stay, genetic type of the disease, previous surgery, fractures, complications, and comorbidity.Aims
Methods
We compared the outcome of closed intramedullary nailing with minimally invasive plate osteosynthesis using a percutaneous locked compression plate in patients with a distal metaphyseal fracture in a prospective study. A total of 85 patients were randomised to operative stabilisation either by a closed intramedullary nail (44) or by minimally invasive osteosynthesis with a compression plate (41). Pre-operative variables included the patients’ age and the side and pattern of the fracture. Peri-operative variables were the operating time and the radiation time. Postoperative variables were wound problems, the time to union of the fracture, the functional American Orthopaedic Foot and Ankle surgery score and removal of hardware. We found no significant difference in the pre-operative variables or in the time to union in the two groups. However, the mean radiation time and operating time were significantly longer in the locked compression plate group (3.0 We conclude that both closed intramedullary nailing and a percutaneous locked compression plate can be used safely to treat Orthopaedic Trauma Association type-43A distal metaphyseal fractures of the tibia. However, closed intramedullary nailing has the advantage of a shorter operating and radiation time and easier removal of the implant. We therefore prefer closed intramedullary nailing for patients with these fractures.
The augmentation of fixation with bone cement
is increasingly being used in the treatment of severe osteoporotic fractures.
We investigated the influence of bone quality on the mechanics of
augmentation of plate fixation in a distal femoral fracture model
(AO 33 A3 type). Eight osteoporotic and eight non-osteoporotic femoral
models were randomly assigned to either an augmented or a non-augmented
group. Fixation was performed using a locking compression plate.
In the augmented group additionally 1 ml of bone cement was injected
into the screw hole before insertion of the screw. Biomechanical
testing was performed in axial sinusoidal loading. Augmentation significantly
reduced the cut-out distance in the osteoporotic models by about
67% (non-augmented mean 0.30 mm ( Cite this article:
Filling the empty holes in peri-articular locking
plates may improve the fatigue strength of the fixation. The purpose of
this A locking/compression plate was applied to 33 synthetic femurs
and then a 6 cm metaphyseal defect was created (AO Type 33-A3).
The specimens were then divided into three groups: unplugged, plugged
with locking screw only and fully plugged holes. They were then
tested using a stepwise or run-out fatigue protocol, each applying
cyclic physiological multiaxial loads. All specimens in the stepwise group failed at the 770 N load
level. The mean number of cycles to failure for the stepwise specimen
was 25 500 cycles ( In conclusion, filling the empty combination locking/compression
holes in peri-articular distal femur locking plates at the level
of supracondylar comminution does not increase the fatigue life
of the fixation in a comminuted supracondylar femoral fracture model
(AO 33-A3) with a 6 cm gap.
We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm3) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.
We identified 11 women with a mean age of 74 years (65 to 81) who sustained comminuted distal radial and ulnar fractures and were treated by volar plating and slight shortening of the radius combined with a primary Sauvé-Kapandji procedure. At a mean of 46 months (16 to 58), union of distal radial fractures and arthrodesis of the distal radioulnar joint was seen in all patients. The mean shortening of the radius was 12 mm (5 to 18) compared to the contralateral side. Flexion and extension of the wrist was a mean of 54° and 50°, respectively, and the mean pronation and supination of the forearm was 82° and 86°, respectively. The final mean disabilities of the arm, shoulder and hand score was 26 points. According to the Green and O’Brien rating system, eight patients had an excellent, two a good and one a fair result. The good clinical and radiological results, and the minor complications without the need for further operations related to late ulnar-sided wrist pain, justify this procedure in the elderly patient.