Advertisement for orthosearch.org.uk
Results 1 - 20 of 750
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 876 - 883
1 Jul 2014
Grammatopoulos G Pandit HG da Assunção R Taylor A McLardy-Smith P De Smet KA Murray DW Gill HS

The orientation of the acetabular component is influenced not only by the orientation at which the surgeon implants the component, but also the orientation of the pelvis at the time of implantation. Hence, the orientation of the pelvis at set-up and its movement during the operation, are important. During 67 hip replacements, using a validated photogrammetric technique, we measured how three surgeons orientated the patient’s pelvis, how much the pelvis moved during surgery, and what effect these had on the final orientation of the acetabular component. Pelvic orientation at set-up, varied widely (mean (± 2, standard deviation (. sd. ))): tilt 8° (2. sd . ±32), obliquity –4° (2. sd . ±12), rotation –8° (2. sd . ±14). Significant differences in pelvic positioning were detected between surgeons (p < 0.001). The mean angular movement of the pelvis between set-up and component implantation was 9° (. sd. 6). Factors influencing pelvic movement included surgeon, approach (posterior >  lateral), procedure (hip resurfacing > total hip replacement) and type of support (p < 0.001). Although, on average, surgeons achieved their desired acetabular component orientation, there was considerable variability (2. sd. ±16) in component orientation. We conclude that inconsistency in positioning the patient at set-up and movement of the pelvis during the operation account for much of the variation in acetabular component orientation. Improved methods of positioning and holding the pelvis are required. Cite this article: Bone Joint J 2014; 96-B:876–83


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1057 - 1061
1 Dec 2021
Ahmad SS Weinrich L Giebel GM Beyer MR Stöckle U Konrads C

Aims. The aim of this study was to determine the association between knee alignment and the vertical orientation of the femoral neck in relation to the floor. This could be clinically important because changes of femoral neck orientation might alter chondral joint contact zones and joint reaction forces, potentially inducing problems like pain in pre-existing chondral degeneration. Further, the femoral neck orientation influences the ischiofemoral space and a small ischiofemoral distance can lead to impingement. We hypothesized that a valgus knee alignment is associated with a more vertical orientation of the femoral neck in standing position, compared to a varus knee. We further hypothesized that realignment surgery around the knee alters the vertical orientation of the femoral neck. Methods. Long-leg standing radiographs of patients undergoing realignment surgery around the knee were used. The hip-knee-ankle angle (HKA) and the vertical orientation of the femoral neck in relation to the floor were measured, prior to surgery and after osteotomy-site-union. Linear regression was performed to determine the influence of knee alignment on the vertical orientation of the femoral neck. Results. The cohort included 147 patients who underwent knee realignment-surgery. The mean age was 51.5 years (SD 11). Overall, 106 patients underwent a valgisation-osteotomy, while 41 underwent varisation osteotomy. There was a significant association between the orientation of the knee and the coronal neck-orientation. In the varus group, the median orientation of the femoral neck was 46.5° (interquartile range (IQR) 49.7° to 50.0°), while in the valgus group, the orientation was 52.0° (IQR 46.5° to 56.7°; p < 0.001). Linear regression analysis revealed that HKA demonstrated a direct influence on the coronal neck-orientation (β = 0.5 (95% confidence interval (CI) 0.2 to 0.7); p = 0.002). Linear regression also showed that realignment surgery was associated with a significant influence on the change in the coronal femoral neck orientation (β = 5.6 (95% CI 1.5 to 9.8); p = 0.008). Conclusion. Varus or valgus knee alignment is associated with either a more horizontal or a more vertical femoral neck orientation in standing position, respectively. Subsequently, osteotomies around the knee alter the vertical orientation of the femoral neck. These aspects are of importance when planning osteotomies around the knee in order to appreciate the effects on the adjacent hip joint. The concept may be of even more relevance in dysplastic hips. Cite this article: Bone Jt Open 2021;2(12):1057–1061


Bone & Joint Research
Vol. 12, Issue 9 | Pages 571 - 579
20 Sep 2023
Navacchia A Pagkalos J Davis ET

Aims. The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. Methods. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock). Results. The position of the lip changes the ROM prior to impingement, with certain combinations leading to impingement within the physiological ROM. Inferior lip positions (7 to 8 o’clock) performed best with cup inclinations of 30° and 40°. Superior lip positions performed best with cup inclination of 50°. When impingement occurs in the plane of the lip, the lip increases the travel distance prior to dislocation. Inferior lip positions led to the largest increase in jump distance in a posterior dislocation provocation manoeuvre. Conclusion. The lip orientation that provides optimal physiological ROM depends on the orientation of the cup and stem. For a THA with stem anteversion 15°, cup inclination 40°, and cup anteversion 15°, the optimal lip position was posterior-inferior (8 o’clock). Maximizing jump distance prior to dislocation while preventing impingement in the opposite direction is possible with appropriate lip positioning. Cite this article: Bone Joint Res 2023;12(9):571–579


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1290 - 1297
1 Oct 2014
Grammatopoulos G Pandit HG da Assunção R McLardy-Smith P De Smet KA Gill HS Murray DW

There is great variability in acetabular component orientation following hip replacement. The aims of this study were to compare the component orientation at impaction with the orientation measured on post-operative radiographs and identify factors that influence the difference between the two. A total of 67 hip replacements (52 total hip replacements and 15 hip resurfacings) were prospectively studied. Intra-operatively, the orientation of the acetabular component after impaction relative to the operating table was measured using a validated stereo-photogrammetry protocol. Post-operatively, the radiographic orientation was measured; the mean inclination/anteversion was 43° (. sd. 6°)/ 19° (. sd. 7°). A simulated radiographic orientation was calculated based on how the orientation would have appeared had an on-table radiograph been taken intra-operatively. The mean difference between radiographic and intra-operative inclination/anteversion was 5° (. sd . 5°)/ -8° (. sd.  8°). The mean difference between simulated radiographic and intra-operative inclination/anteversion, which quantifies the effect of the different way acetabular orientation is measured, was 3°/-6° (. sd.  2°). The mean difference between radiographic and simulated radiographic orientation inclination/anteversion, which is a manifestation of the change in pelvic position between component impaction and radiograph, was 1°/-2° (. sd . 7°). This study demonstrated that in order to achieve a specific radiographic orientation target, surgeons should implant the acetabular component 5° less inclined and 8° more anteverted than their target. Great variability (2 . sd. about ± 15°) in the post-operative radiographic cup orientation was seen. The two equally contributing causes for this are variability in the orientation at which the cup is implanted, and the change in pelvic position between impaction and post-operative radiograph. Cite this article: Bone Joint J 2014;96-B:1290–7


Bone & Joint Research
Vol. 4, Issue 1 | Pages 6 - 10
1 Jan 2015
Goudie ST Deakin AH Deep K

Objectives. Acetabular component orientation in total hip arthroplasty (THA) influences results. Intra-operatively, the natural arthritic acetabulum is often used as a reference to position the acetabular component. Detailed information regarding its orientation is therefore essential. The aim of this study was to identify the acetabular inclination and anteversion in arthritic hips. Methods. Acetabular inclination and anteversion in 65 symptomatic arthritic hips requiring THA were measured using a computer navigation system. All patients were Caucasian with primary osteoarthritis (29 men, 36 women). The mean age was 68 years (SD 8). Mean inclination was 50.5° (SD 7.8) in men and 52.1° (SD 6.7) in women. Mean anteversion was 8.3° (SD 8.7) in men and 14.4° (SD 11.6) in women. . Results. The difference between men and women in terms of anteversion was significant (p = 0.022). In 75% of hips, the natural orientation was outside the safe zone described by Lewinnek et al (anteversion 15° ± 10°; inclination 40° ± 10°). Conclusion. When using the natural acetabular orientation to guide component placement, it is important to be aware of the differences between men and women, and that in up to 75% of hips natural orientation may be out of what many consider to be a safe zone. Cite this article: Bone Joint Res 2015;4:6–10


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 910 - 916
1 Jul 2016
Pierrepont JW Feyen H Miles BP Young DA Baré JV Shimmin AJ

Aims. Long-term clinical outcomes for ceramic-on-ceramic (CoC) bearings are encouraging. However, there is a risk of squeaking. Guidelines for the orientation of the acetabular component are defined from static imaging, but the position of the pelvis and thus the acetabular component during activities associated with edge-loading are likely to be very different from those measured when the patient is supine. We assessed the functional orientation of the acetabular component. Patients and Methods. A total of 18 patients with reproducible squeaking in their CoC hips during deep flexion were investigated with a control group of 36 non-squeaking CoC hips. The two groups were matched for the type of implant, the orientation of the acetabular component when supine, the size of the femoral head, ligament laxity, maximum hip flexion and body mass index. . Results. The mean functional anteversion of the acetabular component at the point when patients initiated rising from a seated position was significantly less in the squeaking group than in the control group, 8.1° (-10.5° to 36.0°) and 21.1° (-1.9° to 38.4°) respectively (p = 0.002). . Conclusion. The functional orientation of the acetabular component during activities associated with posterior edge-loading are different from those measured when supine due to patient-specific pelvic kinematics. Individuals with a large anterior pelvic tilt during deep flexion might be more susceptible to posterior edge-loading and squeaking as a consequence of a significant decrease in the functional anteversion of the acetabular component. . Cite this article: Bone Joint J 2016;98-B:910–16


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 10 | Pages 1401 - 1405
1 Oct 2006
Honl M Schwieger K Salineros M Jacobs J Morlock M Wimmer M

We compared the orientation of the acetabular component obtained by a conventional manual technique with that using five different navigation systems. Three surgeons carried out five implantations of an acetabular component with each navigation system, as well as manually, using an anatomical model. The orientation of the acetabular component, including inclination and anteversion, and its position was determined using a co-ordinate measuring machine. The variation of the orientation of the acetabular component was higher in the conventional group compared with the navigated group. One experienced surgeon took significantly less time for the procedure. However, his placement of the component was no better than that of the less experienced surgeons. Significantly better inclination and anteversion (p < 0.001 for both) were obtained using navigation. These parameters were not significantly different between the surgeons when using the conventional technique (p = 0.966). The use of computer navigation helps a surgeon to orientate the acetabular component with less variation regarding inclination and anteversion


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1280 - 1288
1 Oct 2018
Grammatopoulos G Gofton W Cochran M Dobransky J Carli A Abdelbary H Gill HS Beaulé PE

Aims. This study aims to: determine the difference in pelvic position that occurs between surgery and radiographic, supine, postoperative assessment; examine how the difference in pelvic position influences subsequent component orientation; and establish whether differences in pelvic position, and thereafter component orientation, exist between total hip arthroplasties (THAs) performed in the supine versus the lateral decubitus positions. Patients and Methods. The intra- and postoperative anteroposterior pelvic radiographs of 321 THAs were included; 167 were performed with the patient supine using the anterior approach and 154 were performed with the patient in the lateral decubitus using the posterior approach. The inclination and anteversion of the acetabular component was measured and the difference (Δ) between the intra- and postoperative radiographs was determined. The target zone was inclination/anteversion of 40°/20° (± 10°). Changes in the tilt, rotation, and obliquity of the pelvis on the intra- and postoperative radiographs were calculated from Δinclination/anteversion using the Levenberg–Marquardt algorithm. Results. The mean postoperative inclination/anteversion was 40° (± 8°)/23° (± 9°) with Δinclination and/or Δanteversion > ± 10° in 74 (21%). Intraoperatively, the pelvis was anteriorly tilted by a mean of 4° (± 10°), internally rotated by a mean of 1° (± 10°) and adducted by a mean of 1° (± 5°). Having Δinclination and/or Δanteversion > ± 10° was associated with a 3.5 odds ratio of having the acetabular component outside the target zone. A greater proportion of THAs that were undertaken with the patient in the lateral decubitus position had Δinclination and/or Δanteversion > ± 10° (35.3%, 54/153) compared with those in the supine position (4.8%, 8/167; p < 0.001). A greater number of acetabular components were within the target zone in THAs undertaken with the patient in the supine position (72%, 120/167), compared with those in the lateral decubitus position (44%, 67/153; p < 0.001). Intraoperatively, the pelvis was more anteriorly tilted (p < 0.001) and more internally rotated (p = 0.04) when the patient was in the lateral decubitus position. Conclusion. The pelvic position is more reliable when the patient is in the supine position, leading to more consistent orientation of the acetabular component. Significant differences in pelvic tilt and rotation are seen with the patient in the lateral decubitus position. Cite this article: Bone Joint J 2018;100-B:1280–8


Bone & Joint Research
Vol. 9, Issue 6 | Pages 272 - 278
1 Jun 2020
Tapasvi S Shekhar A Patil S Pandit H

Aims. The mobile bearing Oxford unicompartmental knee arthroplasty (OUKA) is recommended to be performed with the leg in the hanging leg (HL) position, and the thigh placed in a stirrup. This comparative cadaveric study assesses implant positioning and intraoperative kinematics of OUKA implanted either in the HL position or in the supine leg (SL) position. Methods. A total of 16 fresh-frozen knees in eight human cadavers, without macroscopic anatomical defects, were selected. The knees from each cadaver were randomized to have the OUKA implanted in the HL or SL position. Results. Tibial base plate rotation was significantly more variable in the SL group with 75% of tibiae mal-rotated. Multivariate analysis of navigation data found no difference based on all kinematic parameters across the range of motion (ROM). However, area under the curve analysis showed that knees placed in the HL position had much smaller differences between the pre- and post-surgery conditions for kinematics mean values across the entire ROM. Conclusion. The sagittal tibia cut, not dependent on standard instrumentation, determines the tibial component rotation. The HL position improves accuracy of this step compared to the SL position, probably due to better visuospatial orientation of the hip and knee to the surgeon. The HL position is better for replicating native kinematics of the knee as shown by the area under the curve analysis. In the supine knee position, care must be taken during the sagittal tibia cut, while checking flexion balance and when sizing the tibial component


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1072 - 1078
1 Aug 2010
Grammatopoulos G Pandit H Glyn-Jones S McLardy-Smith P Gundle R Whitwell D Gill HS Murray DW

Pseudotumours are a rare complication of hip resurfacing. They are thought to be a response to metal debris which may be caused by edge loading due to poor orientation of the acetabular component. Our aim was to determine the optimal acetabular orientation to minimise the risk of pseudotumour formation. We matched 31 hip resurfacings revised for pseudotumour formation with 58 controls who had a satisfactory outcome from this procedure. The radiographic inclination and anteversion angles of the acetabular component were measured on anteroposterior radiographs of the pelvis using Einzel-Bild-Roentgen-Analyse software. The mean inclination angle (47°, 10° to 81°) and anteversion angle (14°, 4° to 34°) of the pseudotumour cases were the same (p = 0.8, p = 0.2) as the controls, 46° (29° to 60°) and 16° (4° to 30°) respectively, but the variation was greater. Assuming an accuracy of implantation of ± 10° about a target position, the optimal radiographic position was found to be approximately 45° of inclination and 20° of anteversion. The incidence of pseudotumours inside the zone was four times lower (p = 0.007) than outside the zone. In order to minimise the risk of pseudotumour formation we recommend that surgeons implant the acetabular component at an inclination of 45° (± 10) and anteversion of 20° (± 10) on post-operative radiographs. Because of differences between the radiographic and the operative angles, this may be best achieved by aiming for an inclination of 40° and an anteversion of 25°


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1105 - 1109
1 Aug 2006
Kandemir U Allaire RB Jolly JT Debski RE McMahon PJ

Our aim was to determine the most repeatable three-dimensional measurement of glenoid orientation and to compare it between shoulders with intact and torn rotator cuffs. Our null hypothesis was that glenoid orientation in the scapulae of shoulders with a full-thickness tear of the rotator cuff was the same as that in shoulders with an intact rotator cuff. We studied 24 shoulders in cadavers, 12 with an intact rotator cuff and 12 with a full-thickness tear. Two different observers used a three-dimensional digitising system to measure glenoid orientation in the scapular plane (ie glenoid inclination) using six different techniques. Glenoid version was also measured. The overall precision of the measurements revealed an error of less than 0.6°. Intraobserver reliability (correlation coefficients of 0.990 and 0.984 for each observer) and interobserver reliability (correlation coefficient of 0.985) were highest for measurement of glenoid inclination based on the angle obtained from a line connecting the superior and inferior points of the glenoid and that connecting the most superior point of the glenoid and the most superior point on the body of the scapula. There were no differences in glenoid inclination (p = 0.34) or glenoid version (p = 0.12) in scapulae from shoulders with an intact rotator cuff and those with a full-thickness tear. Abnormal glenoid orientation was not present in shoulders with a torn rotator cuff


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 164 - 172
1 Feb 2015
Grammatopoulos G Thomas GER Pandit H Beard DJ Gill HS Murray DW

We assessed the orientation of the acetabular component in 1070 primary total hip arthroplasties with hard-on-soft, small diameter bearings, aiming to determine the size and site of the target zone that optimises outcome. Outcome measures included complications, dislocations, revisions and ΔOHS (the difference between the Oxford Hip Scores pre-operatively and five years post-operatively). A wide scatter of orientation was observed (2. sd.  15°). Placing the component within Lewinnek’s zone was not associated withimproved outcome. Of the different zone sizes tested (± 5°, ± 10° and ± 15°), only ± 15° was associated with a decreased rate of dislocation. The dislocation rate with acetabular components inside an inclination/anteversion zone of 40°/15° ± 15° was four times lower than those outside. The only zone size associated with statistically significant and clinically important improvement in OHS was ± 5°. The best outcomes (ΔOHS > 26) were achieved with a 45°/25° ± 5° zone. . This study demonstrated that with traditional technology surgeons can only reliably achieve a target zone of ±15°. As the optimal zone to diminish the risk of dislocation is also ±15°, surgeons should be able to achieve this. This is the first study to demonstrate that optimal orientation of the acetabular component improves the functional outcome. However, the target zone is small (± 5°) and cannot, with current technology, be consistently achieved. Cite this article: Bone Joint J 2015;97-B:164–72


The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 2 | Pages 228 - 232
1 Mar 1993
Murray D

The orientation of an acetabulum or an acetabular prosthesis may be described by its inclination and anteversion. Orientation can be assessed anatomically, radiographically, and by direct observation at operation. The angles of inclination and anteversion determined by these three methods differ because they have different spatial arrangements. There are therefore three distinct definitions of inclination and anteversion. This paper analyses the differences between the definitions and provides nomograms to convert from one to another. It is recommended that the operative definitions be used to describe the orientation of prostheses and that the anatomical definitions be used for dysplastic acetabula


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 6 | Pages 996 - 1002
1 Nov 1990
Sarmiento A Ebramzadeh E Gogan W McKellop H

We reviewed the radiographs of 864 Charnley and STH (Zimmer) cemented total hip arthroplasties with a mean follow-up of seven years (maximum 16 years). Survivorship analysis was used to assess the correlation between radiographic performance and the bony containment or the coronal orientation of the acetabular cup. The cup orientation and containment were interrelated; all vertically oriented cups were completely contained, whereas 25% of more horizontal cups were only partially contained. Completely contained cups had significantly lower incidences of complete cement-bone radiolucency (p = 0.02) and of wear (p = 0.09). Vertically oriented cups had a lower incidence of continuous radiolucency than neutrally oriented cups, but this was not statistically significant (p = 0.25). Our results confirm the importance of complete bony containment, and also indicate that it is better to accept vertical orientation and obtain full bony coverage than to have a more horizontal orientation with partial containment


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1021 - 1026
1 Aug 2011
Kalteis T Sendtner E Beverland D Archbold PA Hube R Schuster T Renkawitz T Grifka J

Orientation of the native acetabular plane as defined by the transverse acetabular ligament (TAL) and the posterior labrum was measured intra-operatively using computer-assisted navigation in 39 hips. In order to assess the influence of alignment on impingement, the range of movement was calculated for that defined by the TAL and the posterior labrum and compared with a standard acetabular component position (abduction 45°/anteversion 15°). With respect to the registration of the plane defined by the TAL and the posterior labrum, there was moderate interobserver agreement (r = 0.64, p < 0.001) and intra-observer reproducibility (r = 0.73, p < 0.001). The mean acetabular component orientation achieved was abduction of 41° (32° to 51°) and anteversion of 18° (−1° to 36°). With respect to the Lewinnek safe zone (abduction 40° ±10°, anteversion 15° ±10°), 35 of the 39 acetabular components were within this zone. However, there was no improvement in the range of movement (p = 0.94) and no significant difference in impingement (p = 0.085). Alignment of the acetabular component with the TAL and the posterior labrum might reduce the variability of acetabular component placement in total hip replacement. However, there is only a moderate interobserver agreement and intra-observer reliability in the alignment of the acetabular component using the TAL and the posterior labrum. No reduction in impingement was found when the acetabular component was aligned with the TAL and the posterior labrum, compared with a standard acetabular component position


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 471 - 476
1 Apr 2007
Kim Y Kim J Yoon S

Bilateral sequential total knee replacement was carried out under one anaesthetic in 100 patients. One knee was replaced using a CT-free computer-assisted navigation system and the other conventionally without navigation. The two methods were compared for accuracy of orientation and alignment of the components. There were 85 women and 15 men with a mean age of 67.6 years (54 to 83). Radiological and CT imaging was carried out to determine the alignment of the components. The mean follow-up was 2.3 years (2 to 3). The operating and tourniquet times were significantly longer in the navigation group (p < 0.001). There were no significant pre- or post-operative differences between the knee scores of the two groups (p = 0.288 and p = 0.429, respectively). The results of imaging and the number of outliers for all radiological parameters were not statistically different (p = 0.109 to p = 0.920). In this series computer-assisted navigated total knee replacement did not result in more accurate orientation and alignment of the components than that achieved by conventional total knee replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 629 - 633
1 May 2011
Hirschmann MT Konala P Amsler F Iranpour F Friederich NF Cobb JP

We studied the intra- and interobserver reliability of measurements of the position of the components after total knee replacement (TKR) using a combination of radiographs and axial two-dimensional (2D) and three-dimensional (3D) reconstructed CT images to identify which method is best for this purpose. A total of 30 knees after primary TKR were assessed by two independent observers (an orthopaedic surgeon and a radiologist) using radiographs and CT scans. Plain radiographs were highly reliable at measuring the tibial slope, but showed wide variability for all other measurements; 2D-CT also showed wide variability. 3D-CT was highly reliable, even when measuring rotation of the femoral components, and significantly better than 2D-CT. Interobserver variability in the measurements on radiographs were good (intraclass correlation coefficient (ICC) 0.65 to 0.82), but rotational measurements on 2D-CT were poor (ICC 0.29). On 3D-CT they were near perfect (ICC 0.89 to 0.99), and significantly more reliable than 2D-CT (p < 0.001). 3D-reconstructed images are sufficiently reliable to enable reporting of the position and orientation of the components. Rotational measurements in particular should be performed on 3D-reconstructed CT images. When faced with a poorly functioning TKR with concerns over component positioning, we recommend 3D-CT as the investigation of choice


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 312 - 318
1 Mar 2014
Meermans G Van Doorn WJ Koenraadt K Kats J

The orientation of the acetabular component can influence both the short- and long-term outcomes of total hip replacement (THR). We performed a prospective, randomised, controlled trial of two groups, comprising of 40 patients each, in order to compare freehand introduction of the component with introduction using the transverse acetabular ligament (TAL) as a reference for anteversion. Anteversion and inclination were measured on pelvic radiographs. With respect to anteversion, in the freehand group 22.5% of the components were outside the safe zone versus 0% in the transverse acetabular ligament group (p = 0.002). The mean angle of anteversion in the freehand group was 21° (2° to 35°) which was significantly higher compared with 17° (2° to 25°) in the TAL group (p = 0.004). There was a significant difference comparing the variations of both groups (p = 0.008). With respect to inclination, in the freehand group 37.5% of the components were outside the safe zone versus 20% in the TAL group (p = 0.14). There was no significant difference regarding the accuracy or variation of the angle of inclination when comparing the two groups. . The transverse acetabular ligament may be used to obtain the appropriate anteversion when introducing the acetabular component during THR, but not acetabular component inclination. . Cite this article: Bone Joint J 2014;96-B:312–18


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 845 - 852
1 Jul 2018
Langston J Pierrepont J Gu Y Shimmin A

Aims. It is important to consider sagittal pelvic rotation when introducing the acetabular component at total hip arthroplasty (THA). The purpose of this study was to identify patients who are at risk of unfavourable pelvic mobility, which could result in poor outcomes after THA. Patients and Methods. A consecutive series of 4042 patients undergoing THA had lateral functional radiographs and a low-dose CT scan to measure supine pelvic tilt, pelvic incidence, standing pelvic tilt, flexed-seated pelvic tilt, standing lumbar lordotic angle, flexed-seated lumbar lordotic angle, and lumbar flexion. Changes in pelvic tilt from supine-to-standing positions and supine-to-flexed-seated positions were determined. A change in pelvic tilt of 13° between positions was deemed unfavourable as it alters functional anteversion by 10° and effectively places the acetabular component outside the safe zone of orientation. Results. For both men and women, the degree of lumbar flexion was a significant predictor of risk in hip flexion (p < 0.0001) with increased odds of unfavourable pelvic mobility in those with lumbar flexion of < 20° (men, odds ratio (OR) 6.74, 95% confidence interval (CI) 3.83 to 11.89; women, OR 2.97, 95% CI 1.87 to 4.71). In women, age and standing pelvic tilt were significant predictors of risk in hip extension (p = 0.0082 and p < 0.0001, respectively). The risk of unfavourable pelvic mobility was higher in those aged > 75 years (OR 2.28, 95% CI 1.56 to 3.32) and those with standing pelvic tilt of < -10° for extension risk (OR 7.10, 95% CI 4.10 to 10.29). In men, only standing pelvic tilt was significant (p < 0.0001) for hip extension with an increased risk of unfavourable pelvic mobility (OR 8.68, 95% CI 5.19 to 14.51). Conclusion. Patients found to have unfavourable pelvic mobility had limited lumbar flexion and more posterior standing pelvic tilt in both men and women, as well as increasing age in women. We recommend that patients undergo preoperative functional radiographic screening to determine specific parameters that can affect the functional orientation of the acetabular component. Cite this article: Bone Joint J 2018;100-B:845–52


The Journal of Bone & Joint Surgery British Volume
Vol. 65-B, Issue 2 | Pages 189 - 194
1 Mar 1983
Kent G Dodds R Klenerman L Watts R Bitensky L Chayen J

The aim of this study was to try to elucidate the increased susceptibility of the neck of femur to fracture. Quantitative polarised light microscopy has been applied to fresh, undecalcified sections of samples of bone taken from the site of fracture, in specimens taken at operation from patients with fractures of the femoral neck or osteoarthritic femoral heads or from the equivalent site from otherwise normal subjects at necropsy. In all 21 specimens of fractured necks of femur, but in none of the other specimens, relatively large crystals (up to 2.5 X 0.5 micrometres) were found close to the site of fracture; the properties of these crystals were compatible with their being apatite. Measurement of the natural birefringence of the collagen showed no difference in the orientation of the collagen in all three types of specimen. However, the orientation of acidic glycosaminoglycans, measured by the birefringence of alcian blue bound to these moieties, was 45 per cent lower in the specimens from fractured necks of femur than in the other specimens, even though the total content of acidic glycosaminoglycans was unchanged. Although the decreased orientation was most marked close to the site of fracture, it was still apparent 15 millimetres from that site. These changes were unlikely to be simply the sequelae of fracture since they were not found in traumatic fractures of other bones. Thus it is conceivable that changes in the orientation of the ground substance allow formation of relatively large crystals of apatite and that such crystals, in the microcrystalline mass of apatite, are the cause of the increased fragility of such bones