Advertisement for orthosearch.org.uk
Results 1 - 20 of 256
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 876 - 883
1 Jul 2014
Grammatopoulos G Pandit HG da Assunção R Taylor A McLardy-Smith P De Smet KA Murray DW Gill HS

The orientation of the acetabular component is influenced not only by the orientation at which the surgeon implants the component, but also the orientation of the pelvis at the time of implantation. Hence, the orientation of the pelvis at set-up and its movement during the operation, are important. During 67 hip replacements, using a validated photogrammetric technique, we measured how three surgeons orientated the patient’s pelvis, how much the pelvis moved during surgery, and what effect these had on the final orientation of the acetabular component. Pelvic orientation at set-up, varied widely (mean (± 2, standard deviation (. sd. ))): tilt 8° (2. sd . ±32), obliquity –4° (2. sd . ±12), rotation –8° (2. sd . ±14). Significant differences in pelvic positioning were detected between surgeons (p < 0.001). The mean angular movement of the pelvis between set-up and component implantation was 9° (. sd. 6). Factors influencing pelvic movement included surgeon, approach (posterior >  lateral), procedure (hip resurfacing > total hip replacement) and type of support (p < 0.001). Although, on average, surgeons achieved their desired acetabular component orientation, there was considerable variability (2. sd. ±16) in component orientation. We conclude that inconsistency in positioning the patient at set-up and movement of the pelvis during the operation account for much of the variation in acetabular component orientation. Improved methods of positioning and holding the pelvis are required. Cite this article: Bone Joint J 2014; 96-B:876–83


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1057 - 1061
1 Dec 2021
Ahmad SS Weinrich L Giebel GM Beyer MR Stöckle U Konrads C

Aims. The aim of this study was to determine the association between knee alignment and the vertical orientation of the femoral neck in relation to the floor. This could be clinically important because changes of femoral neck orientation might alter chondral joint contact zones and joint reaction forces, potentially inducing problems like pain in pre-existing chondral degeneration. Further, the femoral neck orientation influences the ischiofemoral space and a small ischiofemoral distance can lead to impingement. We hypothesized that a valgus knee alignment is associated with a more vertical orientation of the femoral neck in standing position, compared to a varus knee. We further hypothesized that realignment surgery around the knee alters the vertical orientation of the femoral neck. Methods. Long-leg standing radiographs of patients undergoing realignment surgery around the knee were used. The hip-knee-ankle angle (HKA) and the vertical orientation of the femoral neck in relation to the floor were measured, prior to surgery and after osteotomy-site-union. Linear regression was performed to determine the influence of knee alignment on the vertical orientation of the femoral neck. Results. The cohort included 147 patients who underwent knee realignment-surgery. The mean age was 51.5 years (SD 11). Overall, 106 patients underwent a valgisation-osteotomy, while 41 underwent varisation osteotomy. There was a significant association between the orientation of the knee and the coronal neck-orientation. In the varus group, the median orientation of the femoral neck was 46.5° (interquartile range (IQR) 49.7° to 50.0°), while in the valgus group, the orientation was 52.0° (IQR 46.5° to 56.7°; p < 0.001). Linear regression analysis revealed that HKA demonstrated a direct influence on the coronal neck-orientation (β = 0.5 (95% confidence interval (CI) 0.2 to 0.7); p = 0.002). Linear regression also showed that realignment surgery was associated with a significant influence on the change in the coronal femoral neck orientation (β = 5.6 (95% CI 1.5 to 9.8); p = 0.008). Conclusion. Varus or valgus knee alignment is associated with either a more horizontal or a more vertical femoral neck orientation in standing position, respectively. Subsequently, osteotomies around the knee alter the vertical orientation of the femoral neck. These aspects are of importance when planning osteotomies around the knee in order to appreciate the effects on the adjacent hip joint. The concept may be of even more relevance in dysplastic hips. Cite this article: Bone Jt Open 2021;2(12):1057–1061


Bone & Joint Research
Vol. 12, Issue 9 | Pages 571 - 579
20 Sep 2023
Navacchia A Pagkalos J Davis ET

Aims. The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. Methods. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock). Results. The position of the lip changes the ROM prior to impingement, with certain combinations leading to impingement within the physiological ROM. Inferior lip positions (7 to 8 o’clock) performed best with cup inclinations of 30° and 40°. Superior lip positions performed best with cup inclination of 50°. When impingement occurs in the plane of the lip, the lip increases the travel distance prior to dislocation. Inferior lip positions led to the largest increase in jump distance in a posterior dislocation provocation manoeuvre. Conclusion. The lip orientation that provides optimal physiological ROM depends on the orientation of the cup and stem. For a THA with stem anteversion 15°, cup inclination 40°, and cup anteversion 15°, the optimal lip position was posterior-inferior (8 o’clock). Maximizing jump distance prior to dislocation while preventing impingement in the opposite direction is possible with appropriate lip positioning. Cite this article: Bone Joint Res 2023;12(9):571–579


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1290 - 1297
1 Oct 2014
Grammatopoulos G Pandit HG da Assunção R McLardy-Smith P De Smet KA Gill HS Murray DW

There is great variability in acetabular component orientation following hip replacement. The aims of this study were to compare the component orientation at impaction with the orientation measured on post-operative radiographs and identify factors that influence the difference between the two. A total of 67 hip replacements (52 total hip replacements and 15 hip resurfacings) were prospectively studied. Intra-operatively, the orientation of the acetabular component after impaction relative to the operating table was measured using a validated stereo-photogrammetry protocol. Post-operatively, the radiographic orientation was measured; the mean inclination/anteversion was 43° (. sd. 6°)/ 19° (. sd. 7°). A simulated radiographic orientation was calculated based on how the orientation would have appeared had an on-table radiograph been taken intra-operatively. The mean difference between radiographic and intra-operative inclination/anteversion was 5° (. sd . 5°)/ -8° (. sd.  8°). The mean difference between simulated radiographic and intra-operative inclination/anteversion, which quantifies the effect of the different way acetabular orientation is measured, was 3°/-6° (. sd.  2°). The mean difference between radiographic and simulated radiographic orientation inclination/anteversion, which is a manifestation of the change in pelvic position between component impaction and radiograph, was 1°/-2° (. sd . 7°). This study demonstrated that in order to achieve a specific radiographic orientation target, surgeons should implant the acetabular component 5° less inclined and 8° more anteverted than their target. Great variability (2 . sd. about ± 15°) in the post-operative radiographic cup orientation was seen. The two equally contributing causes for this are variability in the orientation at which the cup is implanted, and the change in pelvic position between impaction and post-operative radiograph. Cite this article: Bone Joint J 2014;96-B:1290–7


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 910 - 916
1 Jul 2016
Pierrepont JW Feyen H Miles BP Young DA Baré JV Shimmin AJ

Aims. Long-term clinical outcomes for ceramic-on-ceramic (CoC) bearings are encouraging. However, there is a risk of squeaking. Guidelines for the orientation of the acetabular component are defined from static imaging, but the position of the pelvis and thus the acetabular component during activities associated with edge-loading are likely to be very different from those measured when the patient is supine. We assessed the functional orientation of the acetabular component. Patients and Methods. A total of 18 patients with reproducible squeaking in their CoC hips during deep flexion were investigated with a control group of 36 non-squeaking CoC hips. The two groups were matched for the type of implant, the orientation of the acetabular component when supine, the size of the femoral head, ligament laxity, maximum hip flexion and body mass index. . Results. The mean functional anteversion of the acetabular component at the point when patients initiated rising from a seated position was significantly less in the squeaking group than in the control group, 8.1° (-10.5° to 36.0°) and 21.1° (-1.9° to 38.4°) respectively (p = 0.002). . Conclusion. The functional orientation of the acetabular component during activities associated with posterior edge-loading are different from those measured when supine due to patient-specific pelvic kinematics. Individuals with a large anterior pelvic tilt during deep flexion might be more susceptible to posterior edge-loading and squeaking as a consequence of a significant decrease in the functional anteversion of the acetabular component. . Cite this article: Bone Joint J 2016;98-B:910–16


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1280 - 1288
1 Oct 2018
Grammatopoulos G Gofton W Cochran M Dobransky J Carli A Abdelbary H Gill HS Beaulé PE

Aims. This study aims to: determine the difference in pelvic position that occurs between surgery and radiographic, supine, postoperative assessment; examine how the difference in pelvic position influences subsequent component orientation; and establish whether differences in pelvic position, and thereafter component orientation, exist between total hip arthroplasties (THAs) performed in the supine versus the lateral decubitus positions. Patients and Methods. The intra- and postoperative anteroposterior pelvic radiographs of 321 THAs were included; 167 were performed with the patient supine using the anterior approach and 154 were performed with the patient in the lateral decubitus using the posterior approach. The inclination and anteversion of the acetabular component was measured and the difference (Δ) between the intra- and postoperative radiographs was determined. The target zone was inclination/anteversion of 40°/20° (± 10°). Changes in the tilt, rotation, and obliquity of the pelvis on the intra- and postoperative radiographs were calculated from Δinclination/anteversion using the Levenberg–Marquardt algorithm. Results. The mean postoperative inclination/anteversion was 40° (± 8°)/23° (± 9°) with Δinclination and/or Δanteversion > ± 10° in 74 (21%). Intraoperatively, the pelvis was anteriorly tilted by a mean of 4° (± 10°), internally rotated by a mean of 1° (± 10°) and adducted by a mean of 1° (± 5°). Having Δinclination and/or Δanteversion > ± 10° was associated with a 3.5 odds ratio of having the acetabular component outside the target zone. A greater proportion of THAs that were undertaken with the patient in the lateral decubitus position had Δinclination and/or Δanteversion > ± 10° (35.3%, 54/153) compared with those in the supine position (4.8%, 8/167; p < 0.001). A greater number of acetabular components were within the target zone in THAs undertaken with the patient in the supine position (72%, 120/167), compared with those in the lateral decubitus position (44%, 67/153; p < 0.001). Intraoperatively, the pelvis was more anteriorly tilted (p < 0.001) and more internally rotated (p = 0.04) when the patient was in the lateral decubitus position. Conclusion. The pelvic position is more reliable when the patient is in the supine position, leading to more consistent orientation of the acetabular component. Significant differences in pelvic tilt and rotation are seen with the patient in the lateral decubitus position. Cite this article: Bone Joint J 2018;100-B:1280–8


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1072 - 1078
1 Aug 2010
Grammatopoulos G Pandit H Glyn-Jones S McLardy-Smith P Gundle R Whitwell D Gill HS Murray DW

Pseudotumours are a rare complication of hip resurfacing. They are thought to be a response to metal debris which may be caused by edge loading due to poor orientation of the acetabular component. Our aim was to determine the optimal acetabular orientation to minimise the risk of pseudotumour formation. We matched 31 hip resurfacings revised for pseudotumour formation with 58 controls who had a satisfactory outcome from this procedure. The radiographic inclination and anteversion angles of the acetabular component were measured on anteroposterior radiographs of the pelvis using Einzel-Bild-Roentgen-Analyse software. The mean inclination angle (47°, 10° to 81°) and anteversion angle (14°, 4° to 34°) of the pseudotumour cases were the same (p = 0.8, p = 0.2) as the controls, 46° (29° to 60°) and 16° (4° to 30°) respectively, but the variation was greater. Assuming an accuracy of implantation of ± 10° about a target position, the optimal radiographic position was found to be approximately 45° of inclination and 20° of anteversion. The incidence of pseudotumours inside the zone was four times lower (p = 0.007) than outside the zone. In order to minimise the risk of pseudotumour formation we recommend that surgeons implant the acetabular component at an inclination of 45° (± 10) and anteversion of 20° (± 10) on post-operative radiographs. Because of differences between the radiographic and the operative angles, this may be best achieved by aiming for an inclination of 40° and an anteversion of 25°


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 164 - 172
1 Feb 2015
Grammatopoulos G Thomas GER Pandit H Beard DJ Gill HS Murray DW

We assessed the orientation of the acetabular component in 1070 primary total hip arthroplasties with hard-on-soft, small diameter bearings, aiming to determine the size and site of the target zone that optimises outcome. Outcome measures included complications, dislocations, revisions and ΔOHS (the difference between the Oxford Hip Scores pre-operatively and five years post-operatively). A wide scatter of orientation was observed (2. sd.  15°). Placing the component within Lewinnek’s zone was not associated withimproved outcome. Of the different zone sizes tested (± 5°, ± 10° and ± 15°), only ± 15° was associated with a decreased rate of dislocation. The dislocation rate with acetabular components inside an inclination/anteversion zone of 40°/15° ± 15° was four times lower than those outside. The only zone size associated with statistically significant and clinically important improvement in OHS was ± 5°. The best outcomes (ΔOHS > 26) were achieved with a 45°/25° ± 5° zone. . This study demonstrated that with traditional technology surgeons can only reliably achieve a target zone of ±15°. As the optimal zone to diminish the risk of dislocation is also ±15°, surgeons should be able to achieve this. This is the first study to demonstrate that optimal orientation of the acetabular component improves the functional outcome. However, the target zone is small (± 5°) and cannot, with current technology, be consistently achieved. Cite this article: Bone Joint J 2015;97-B:164–72


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1021 - 1026
1 Aug 2011
Kalteis T Sendtner E Beverland D Archbold PA Hube R Schuster T Renkawitz T Grifka J

Orientation of the native acetabular plane as defined by the transverse acetabular ligament (TAL) and the posterior labrum was measured intra-operatively using computer-assisted navigation in 39 hips. In order to assess the influence of alignment on impingement, the range of movement was calculated for that defined by the TAL and the posterior labrum and compared with a standard acetabular component position (abduction 45°/anteversion 15°). With respect to the registration of the plane defined by the TAL and the posterior labrum, there was moderate interobserver agreement (r = 0.64, p < 0.001) and intra-observer reproducibility (r = 0.73, p < 0.001). The mean acetabular component orientation achieved was abduction of 41° (32° to 51°) and anteversion of 18° (−1° to 36°). With respect to the Lewinnek safe zone (abduction 40° ±10°, anteversion 15° ±10°), 35 of the 39 acetabular components were within this zone. However, there was no improvement in the range of movement (p = 0.94) and no significant difference in impingement (p = 0.085). Alignment of the acetabular component with the TAL and the posterior labrum might reduce the variability of acetabular component placement in total hip replacement. However, there is only a moderate interobserver agreement and intra-observer reliability in the alignment of the acetabular component using the TAL and the posterior labrum. No reduction in impingement was found when the acetabular component was aligned with the TAL and the posterior labrum, compared with a standard acetabular component position


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 312 - 318
1 Mar 2014
Meermans G Van Doorn WJ Koenraadt K Kats J

The orientation of the acetabular component can influence both the short- and long-term outcomes of total hip replacement (THR). We performed a prospective, randomised, controlled trial of two groups, comprising of 40 patients each, in order to compare freehand introduction of the component with introduction using the transverse acetabular ligament (TAL) as a reference for anteversion. Anteversion and inclination were measured on pelvic radiographs. With respect to anteversion, in the freehand group 22.5% of the components were outside the safe zone versus 0% in the transverse acetabular ligament group (p = 0.002). The mean angle of anteversion in the freehand group was 21° (2° to 35°) which was significantly higher compared with 17° (2° to 25°) in the TAL group (p = 0.004). There was a significant difference comparing the variations of both groups (p = 0.008). With respect to inclination, in the freehand group 37.5% of the components were outside the safe zone versus 20% in the TAL group (p = 0.14). There was no significant difference regarding the accuracy or variation of the angle of inclination when comparing the two groups. . The transverse acetabular ligament may be used to obtain the appropriate anteversion when introducing the acetabular component during THR, but not acetabular component inclination. . Cite this article: Bone Joint J 2014;96-B:312–18


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 845 - 852
1 Jul 2018
Langston J Pierrepont J Gu Y Shimmin A

Aims. It is important to consider sagittal pelvic rotation when introducing the acetabular component at total hip arthroplasty (THA). The purpose of this study was to identify patients who are at risk of unfavourable pelvic mobility, which could result in poor outcomes after THA. Patients and Methods. A consecutive series of 4042 patients undergoing THA had lateral functional radiographs and a low-dose CT scan to measure supine pelvic tilt, pelvic incidence, standing pelvic tilt, flexed-seated pelvic tilt, standing lumbar lordotic angle, flexed-seated lumbar lordotic angle, and lumbar flexion. Changes in pelvic tilt from supine-to-standing positions and supine-to-flexed-seated positions were determined. A change in pelvic tilt of 13° between positions was deemed unfavourable as it alters functional anteversion by 10° and effectively places the acetabular component outside the safe zone of orientation. Results. For both men and women, the degree of lumbar flexion was a significant predictor of risk in hip flexion (p < 0.0001) with increased odds of unfavourable pelvic mobility in those with lumbar flexion of < 20° (men, odds ratio (OR) 6.74, 95% confidence interval (CI) 3.83 to 11.89; women, OR 2.97, 95% CI 1.87 to 4.71). In women, age and standing pelvic tilt were significant predictors of risk in hip extension (p = 0.0082 and p < 0.0001, respectively). The risk of unfavourable pelvic mobility was higher in those aged > 75 years (OR 2.28, 95% CI 1.56 to 3.32) and those with standing pelvic tilt of < -10° for extension risk (OR 7.10, 95% CI 4.10 to 10.29). In men, only standing pelvic tilt was significant (p < 0.0001) for hip extension with an increased risk of unfavourable pelvic mobility (OR 8.68, 95% CI 5.19 to 14.51). Conclusion. Patients found to have unfavourable pelvic mobility had limited lumbar flexion and more posterior standing pelvic tilt in both men and women, as well as increasing age in women. We recommend that patients undergo preoperative functional radiographic screening to determine specific parameters that can affect the functional orientation of the acetabular component. Cite this article: Bone Joint J 2018;100-B:845–52


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 9 | Pages 1158 - 1164
1 Sep 2007
Lusty PJ Watson A Tuke MA Walter WL Walter WK Zicat B

We studied 33 third generation, alumina ceramic-on-ceramic bearings retrieved from cementless total hip replacements after more than six months in situ. Wear volume was measured with a Roundtest machine, and acetabular orientation from the anteroposterior pelvic radiograph. The overall median early wear rate was 0.1 mm. 3. /yr for the femoral heads, and 0.04 mm. 3. /yr for the acetabular liners. We then excluded hips where the components had migrated. In this stable subgroup of 22 bearings, those with an acetabular anteversion of < 15° (seven femoral heads) had a median femoral head wear rate of 1.2 mm. 3. /yr, compared with 0 mm. 3. /yr for those with an anteversion of ≥15° (15 femoral heads, p < 0.001). Even under edge loading, wear volumes with ceramic-on-ceramic bearings are small in comparison to other bearing materials. Low acetabular anteversion is associated with greater wear


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 883 - 886
1 Jul 2006
Archbold HAP Mockford B Molloy D McConway J Ogonda L Beverland D

Ensuring the accuracy of the intra-operative orientation of the acetabular component during a total hip replacement can be difficult. In this paper we introduce a reproducible technique using the transverse acetabular ligament to determine the anteversion of the acetabular component. We have found that this ligament can be identified in virtually every hip undergoing primary surgery. We describe an intra-operative grading system for the appearance of the ligament. This technique has been used in 1000 consecutive cases. During a minimum follow-up of eight months the dislocation rate was 0.6%. This confirms our hypothesis that the transverse acetabular ligament can be used to determine the position of the acetabular component. The method has been used in both conventional and minimally-invasive approaches


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 45 - 50
1 Jun 2019
Schloemann DT Edelstein AI Barrack RL

Aims

The aims of this study were to determine the change in pelvic sagittal alignment before, during, and after total hip arthroplasty (THA) undertaken with the patient in the lateral decubitus position, and to determine the impact of these changes on acetabular component position.

Patients and Methods

We retrospectively compared the radiological pelvic ratio among 91 patients undergoing THA. In total, 41 patients (46%) were female. The mean age was 61.6 years (sd 10.7) and the mean body mass index (BMI) was 20.0 kg/m2 (sd 5.5). Anteroposterior radiographs were obtained: in the standing position preoperatively and at six weeks postoperatively; in the lateral decubitus position after trial reduction intraoperatively; and in the supine position in the post-anaesthesia care unit. Pelvic ratio was defined as the ratio between the vertical distance from the inferior aspect of the sacroiliac (SI) joints to the superior pubic symphysis and the horizontal distance between the inferior aspect of the SI joints. Changes in the apparent component position based on changes in pelvic ratio were determined, with a change of > 5° considered clinically significant. Analyses were performed using Wilcoxon’s signed-rank test, with p < 0.05 considered significant.


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 891 - 897
1 Jul 2018
Teeter MG Lanting BA Naudie DD McCalden RW Howard JL MacDonald SJ

Aims

The aim of this study was to determine whether there is a difference in the rate of wear between acetabular components positioned within and outside the ‘safe zones’ of anteversion and inclination angle.

Patients and Methods

We reviewed 100 hips in 94 patients who had undergone primary total hip arthroplasty (THA) at least ten years previously. Patients all had the same type of acetabular component with a bearing couple which consisted of a 28 mm cobalt-chromium head on a highly crosslinked polyethylene (HXLPE) liner. A supine radiostereometric analysis (RSA) examination was carried out which acquired anteroposterior (AP) and lateral paired images. Acetabular component anteversion and inclination angles were measured as well as total femoral head penetration, which was divided by the length of implantation to determine the rate of polyethylene wear.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1143 - 1151
1 Sep 2008
Langton DJ Jameson SS Joyce TJ Webb J Nargol AVF

Increased concentrations of metal ions after metal-on-metal resurfacing arthroplasty of the hip remain a concern. Although there has been no proven link to long-term health problems or early prosthetic failure, variables associated with high metal ion concentrations should be identified and, if possible, corrected. Our study provides data on metal ion levels from a series of 76 consecutive patients (76 hips) after resurfacing arthroplasty with the Articular Surface Replacement. Chromium and cobalt ion concentrations in the whole blood of patients with smaller (≤ 51 mm) femoral components were significantly higher than in those with the larger (≥ 53 mm) components (p < 0.01). Ion concentrations in the former group were significantly related to the inclination (p = 0.01) and anteversion (p = 0.01) of the acetabular component. The same relationships were not significant in the patients with larger femoral components (p = 0.61 and p = 0.49, respectively). Accurate positioning of the acetabular component intra-operatively is essential in order to reduce the concentration of metal ions in the blood after hip resurfacing arthroplasty with the Articular Surface Replacement implant.


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1025 - 1031
1 Sep 2022
Thummala AR Xi Y Middleton E Kohli A Chhabra A Wells J

Aims. Pelvic tilt is believed to affect the symptomology of osteoarthritis (OA) of the hip by alterations in joint movement, dysplasia of the hip by modification of acetabular cover, and femoroacetabular impingement by influencing the impingement-free range of motion. While the apparent role of pelvic tilt in hip pathology has been reported, the exact effects of many forms of treatment on pelvic tilt are unknown. The primary aim of this study was to investigate the effects of surgery on pelvic tilt in these three groups of patients. Methods. The demographic, radiological, and outcome data for all patients operated on by the senior author between October 2016 and January 2020 were identified from a prospective registry, and all those who underwent surgery with a primary diagnosis of OA, dysplasia, or femoroacetabular impingement were considered for inclusion. Pelvic tilt was assessed on anteroposterior (AP) standing radiographs using the pre- and postoperative pubic symphysis to sacroiliac joint (PS-SI) distance, and the outcomes were assessed with the Hip Outcome Score (HOS), International Hip Outcome Tool (iHOT-12), and Harris Hip Score (HHS). Results. The linear regression model revealed a significant negative predictive association between the standing pre- and postoperative PS-SI distances for all three groups of patients (all p < 0.001). There was a significant improvement in all three outcome measures between the pre- and postoperative values (p < 0.05). Conclusion. There is a statistically significant decrease in pelvic tilt after surgery in patients with OA of the hip, dysplasia, and femoroacetabular impingement. These results confirm that surgery significantly alters the pelvic orientation. Pelvic tilt significantly decreased after total hip arthroplasty, periacetabular osteotomy, and arthroscopy/surgical hip dislocation. The impact of surgery on pelvic tilt should be considered within the therapeutic plan in order to optimize pelvic orientation in these patients. Cite this article: Bone Joint J 2022;104-B(9):1025–1031


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 128 - 135
1 Feb 2024
Jenkinson MRJ Cheung TCC Witt J Hutt JRB

Aims. The aim of this study is to evaluate whether acetabular retroversion (AR) represents a structural anatomical abnormality of the pelvis or is a functional phenomenon of pelvic positioning in the sagittal plane, and to what extent the changes that result from patient-specific functional position affect the extent of AR. Methods. A comparative radiological study of 19 patients (38 hips) with AR were compared with a control group of 30 asymptomatic patients (60 hips). CT scans were corrected for rotation in the axial and coronal planes, and the sagittal plane was then aligned to the anterior pelvic plane. External rotation of the hemipelvis was assessed using the superior iliac wing and inferior iliac wing angles as well as quadrilateral plate angles, and correlated with cranial and central acetabular version. Sagittal anatomical parameters were also measured and correlated to version measurements. In 12 AR patients (24 hips), the axial measurements were repeated after matching sagittal pelvic rotation with standing and supine anteroposterior radiographs. Results. Acetabular version was significantly lower and measurements of external rotation of the hemipelvis were significantly increased in the AR group compared to the control group. The AR group also had increased evidence of anterior projection of the iliac wing in the sagittal plane. The acetabular orientation angles were more retroverted in the supine compared to standing position, and the change in acetabular version correlated with the change in sagittal pelvic tilt. An anterior pelvic tilt of 1° correlated with 1.02° of increased cranial retroversion and 0.76° of increased central retroversion. Conclusion. This study has demonstrated that patients with symptomatic AR have both an externally rotated hemipelvis and increased anterior projection of the iliac wing compared to a control group of asymptomatic patients. Functional sagittal pelvic positioning was also found to affect AR in symptomatic patients: the acetabulum was more retroverted in the supine position compared to standing position. Changes in acetabular version correlate with the change in sagittal pelvic tilt. These findings should be taken into account by surgeons when planning acetabular correction for AR with periacetabular osteotomy. Cite this article: Bone Joint J 2024;106-B(2):128–135


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims. Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. Methods. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery. Results. There were no significant differences for any of the baseline characteristics including spinopelvic mobility. The absolute error for achieving the planned horizontal COR was median 1.4 mm (interquartile range (IQR) 0.87 to 3.42) in RO THA versus 4.3 mm (IQR 3 to 6.8; p < 0.001); vertical COR mean 0.91 mm (SD 0.73) in RO THA versus 2.3 mm (SD 1.3; p < 0.001); and combined offset median 2 mm (IQR 0.97 to 5.45) in RO THA versus 3.9 mm (IQR 2 to 7.9; p = 0.019). Improved accuracy was observed with RO THA in achieving the desired acetabular component positioning (root mean square error for anteversion and inclination was 2.6 and 1.3 vs 8.9 and 5.3, repectively) and leg length (mean 0.6 mm vs 1.4 mm; p < 0.001). Patient-reported outcome measures were comparable between the two groups at baseline and one year. Participants in the RO THA group needed fewer physiotherapy sessions postoperatively (median six (IQR 4.5 to 8) vs eight (IQR 6 to 11; p = 0.005). Conclusion. This RCT suggested that robotic-arm assistance in THA was associated with improved accuracy in restoring the native COR, better preservation of the combined offset, leg length correction, and superior accuracy in achieving the desired acetabular component positioning. Further evaluation through long-term and registry data is necessary to assess whether these findings translate into improved implant survival and functional outcomes. Cite this article: Bone Joint J 2024;106-B(4):324–335


Bone & Joint Open
Vol. 4, Issue 11 | Pages 853 - 858
10 Nov 2023
Subbiah Ponniah H Logishetty K Edwards TC Singer GC

Aims. Metal-on-metal hip resurfacing (MoM-HR) has seen decreased usage due to safety and longevity concerns. Joint registries have highlighted the risks in females, smaller hips, and hip dysplasia. This study aimed to identify if reported risk factors are linked to revision in a long-term follow-up of MoM-HR performed by a non-designer surgeon. Methods. A retrospective review of consecutive MoM hip arthroplasties (MoM-HRAs) using Birmingham Hip Resurfacing was conducted. Data on procedure side, indication, implant sizes and orientation, highest blood cobalt and chromium ion concentrations, and all-cause revision were collected from local and UK National Joint Registry records. Results. A total of 243 hips (205 patients (163 male, 80 female; mean age at surgery 55.3 years (range 25.7 to 75.3)) with MoM-HRA performed between April 2003 and October 2020 were included. Mean follow-up was 11.2 years (range 0.3 to 17.8). Osteoarthritis was the most common indication (93.8%), and 13 hips (5.3%; 7M:6F) showed dysplasia (lateral centre-edge angle < 25°). Acetabular cups were implanted at a median of 45.4° abduction (interquartile range 41.9° - 48.3°) and stems neutral or valgus to the native neck-shaft angle. In all, 11 hips (4.5%; one male, ten females) in ten patients underwent revision surgery at a mean of 7.4 years (range 2.8 to 14.2), giving a cumulative survival rate of 94.8% (95% confidence interval (CI) 91.6% to 98.0%) at ten years, and 93.4% (95% CI 89.3% to 97.6%) at 17 years. For aseptic revision, male survivorship was 100% at 17 years, and 89.6% (95% CI 83.1% to 96.7%) at ten and 17 years for females. Increased metal ion levels were implicated in 50% of female revisions, with the remaining being revised for unexplained pain or avascular necrosis. Conclusion. The Birmingham MoM-HR showed 100% survivorship in males, exceeding the National Institute for Health and Care Excellence ‘5% at ten years’ threshold. Female sex and small component sizes are independent risk factors. Dysplasia alone is not a contraindication to resurfacing. Cite this article: Bone Jt Open 2023;4(11):853–858