Advertisement for orthosearch.org.uk
Results 1 - 20 of 154
Results per page:
Bone & Joint Research
Vol. 5, Issue 1 | Pages 11 - 17
1 Jan 2016
Barlow JD Morrey ME Hartzler RU Arsoy D Riester S van Wijnen AJ Morrey BF Sanchez-Sotelo J Abdel MP

Aims. Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. Methods. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis. Results. There was no significant difference in post-traumatic contracture between the rosiglitazone and control groups (33° (standard deviation (. sd. ) 11) vs 37° (. sd. 14), respectively; p = 0.4). There was no difference in number or percentage of myofibroblasts. Importantly, there were ten genes and 17 pathways that were significantly modulated by rosiglitazone in the posterior capsule. Discussion. Rosiglitazone significantly altered the genetic expression of the posterior capsular tissue in a rabbit model, with ten genes and 17 pathways demonstrating significant modulation. However, there was no significant effect on biomechanical or histological properties. Cite this article: M. P. Abdel. Effectiveness of rosiglitazone in reducing flexion contracture in a rabbit model of arthrofibrosis with surgical capsular release: A biomechanical, histological, and genetic analysis. Bone Joint Res 2016;5:11–17. doi: 10.1302/2046-3758.51.2000593


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 3 | Pages 516 - 521
1 May 1999
Catelas I Petit A Marchand R Zukor DJ Yahia L Huk OL

Although the response of macrophages to polyethylene debris has been widely studied, it has never been compared with the cellular response to ceramic debris. Our aim was to investigate the cytotoxicity of ceramic particles (Al. 2. O. 3. and ZrO. 2. ) and to analyse their ability to stimulate the release of inflammatory mediators compared with that of high-density polyethylene particles (HDP). We analysed the effects of particle size, concentration and composition using an in vitro model. The J774 mouse macrophage cell line was exposed to commercial particles in the phagocytosable range (up to 4.5 μm). Al. 2. O. 3. was compared with ZrO. 2. at 0.6 μm and with HDP at 4.5 μm. Cytotoxicity tests were performed using flow cytometry and macrophage cytokine release was measured by ELISA. Cell mortality increased with the size and concentration of Al. 2. O. 3. particles. When comparing Al. 2. O. 3. and ZrO. 2. at 0.6 μm, we did not detect any significant difference at the concentrations analysed (up to 2500 particles per macrophage), and mortality remained very low (less than 10%). Release of TNF-α also increased with the size and concentration of Al. 2. O. 3. particles, reaching 195% of control (165 pg/ml v 84 pg/ml) at 2.4 μm and 350 particles per cell (p < 0.05). Release of TNF-α was higher with HDP than with Al. 2. O. 3. particles at 4.5 μm. However, we did not detect any significant difference in the release of TNF-α between Al. 2. O. 3. and ZrO. 2. at 0.6 μm (p > 0.05). We saw no evidence of release of interleukin-1α or interleukin-1ß after exposure to ceramic or HDP particles


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 1 | Pages 18 - 21
1 Jan 1996
Kreibich DN Moran CG Delves HT Owen TD Pinder IM

We measured the levels of cobalt and chromium in the serum in three groups of patients after uncemented porous-coated arthroplasty. Group 1 consisted of 14 consecutive patients undergoing revision for aseptic loosening. Group 2 comprised 14 matched patients in whom the arthroplasty was stable and group 3 was 14 similarly matched patients with arthritis awaiting hip replacement. Specimens were analysed using atomic absorption spectrophotometry.

Aseptic loosening of a component resulted in a significant elevation of serum cobalt (p < 0.05), but not of serum chromium. The relative risk of a component being loose, if the patient had a serum cobalt greater than 9.0 nmol/l, was 2.8.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 2 | Pages 288 - 291
1 Mar 2003
Sampathkumar K Jeyam M Evans CE Andrew JG

Aseptic loosening of orthopaedic implants is usually attributed to the action of wear debris from the prosthesis. Recent studies, however, have also implicated physical pressures in the joint as a further cause of loosening. We have examined the role of both wear debris and pressure on the secretion of two chemokines, MIP-1α and MCP-1, together with M-CSF and PGE2, by human macrophages in vitro.

The results show that pressure alone stimulated the secretion of more M-CSF and PGE2 when compared with control cultures. Particles alone stimulated the secretion of M-CSF and PGE2, when compared with unstimulated control cultures, but did not stimulate the secretion of the two chemokines. Exposure of macrophages to both stimuli simultaneously had no synergistic effect on the secretion of the chemokines, but both M-CSF and PGE2 were increased in a synergistic manner. Our findings suggest that pressure may be an initiating factor for the recruitment of cells into the periprosthetic tissue.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 461 - 469
1 Oct 2016
Liu YK Deng XX Yang H

Objectives. The cytotoxicity induced by cobalt ions (Co. 2+. ) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co. 2+. and Co-NPs on liver cells, and explain further the potential mechanisms. Methods. Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co. 2+. or Co-NPs treatment. Results. Results showed cytotoxic effects of Co. 2+. and Co-NPs were dependent upon time and dosage, and the cytotoxicity of Co-NPs was greater than that of Co. 2+. In addition, Co-NPs elicited a significant (p < 0.05) reduction in cell viability with a concomitant increase in lactic dehydrogenase release, reactive oxygen species generation, IL-8 mRNA expression, Bax/Bcl-2 mRNA expression and DNA damage after 24 hours of exposure. Conclusion. Co-NPs induced greater cytotoxicity and genotoxicity in BRL-3A cells than Co. 2+. Cell membrane damage, oxidative stress, immune inflammation and DNA damage may play an important role in the effects of Co-NPs on liver cells. Cite this article: Y. K. Liu, X. X. Deng, H.L. Yang. Cytotoxicity and genotoxicity in liver cells induced by cobalt nanoparticles and ions. Bone Joint Res 2016;5:461–469. DOI: 10.1302/2046-3758.510.BJR-2016-0016.R1


Bone & Joint Research
Vol. 5, Issue 2 | Pages 37 - 45
1 Feb 2016
Roh YH Kim W Park KU Oh JH

Objectives. This study was conducted to evaluate the cytokine-release kinetics of platelet-rich plasma (PRP) according to different activation protocols. Methods. Two manual preparation procedures (single-spin (SS) at 900 g for five minutes; double-spin (DS) at 900 g for five minutes and then 1500 g for 15 minutes) were performed for each of 14 healthy subjects. Both preparations were tested for platelet activation by one of three activation protocols: no activation, activation with calcium (Ca) only, or calcium with a low dose (50 IU per 1 ml PRP) of thrombin. Each preparation was divided into four aliquots and incubated for one hour, 24 hours, 72 hours, and seven days. The cytokine-release kinetics were evaluated by assessing PDGF, TGF, VEGF, FGF, IL-1, and MMP-9 concentrations with bead-based sandwich immunoassay. Results. The concentration of cytokine released from PRP varied over time and was influenced by various activation protocols. Ca-only activation had a significant effect on the DS PRPs (where the VEGF, FGF, and IL-1 concentrations were sustained) while Ca/thrombin activation had effects on both SS and DS PRPs (where the PDGF and VEGF concentrations were sustained and the TGF and FGF concentrations were short). The IL-1 content showed a significant increase with Ca-only or Ca/thrombin activation while these activations did not increase the MMP-9 concentration. Conclusion. The SS and DS methods differed in their effect on cytokine release, and this effect varied among the cytokines analysed. In addition, low dose of thrombin/calcium activation increased the overall cytokine release of the PRP preparations over seven days, relative to that with a calcium-only supplement or non-activation. Cite this article: Professor J. H. Oh. Cytokine-release kinetics of platelet-rich plasma according to various activation protocols. Bone Joint Res 2016;5:37–45. doi: 10.1302/2046-3758.52.2000540


Bone & Joint Research
Vol. 1, Issue 7 | Pages 145 - 151
1 Jul 2012
Sharma A Meyer F Hyvonen M Best SM Cameron RE Rushton N

Objectives. There is increasing application of bone morphogenetic proteins (BMPs) owing to their role in promoting fracture healing and bone fusion. However, an optimal delivery system has yet to be identified. The aims of this study were to synthesise bioactive BMP-2, combine it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide) (α-TCP/PLGA) nanocomposite and study its release from the composite. Methods. BMP-2 was synthesised using an Escherichia coli expression system and purified. In vitro bioactivity was confirmed using C2C12 cells and an alkaline phosphatase assay. The modified solution-evaporation method . was used to fabricate α-TCP/PLGA nanocomposite and this was characterised using X-ray diffraction and scanning electron microscopy. Functionalisation of α-TCP/PLGA nanocomposite by adsorption of BMP-2 was performed and release of BMP-2 was characterised using an enzyme-linked immunosorbent assay (ELISA). Results. Alkaline phosphatase activity of C2C12 cells was increased by the presence of all BMP-2/nanocomposite discs compared with the presence of a blank disc (p = 0.0022), and increased with increasing incubation concentrations of BMP-2, showing successful adsorption and bioactivity of BMP-2. A burst release profile was observed for BMP-2 from the nanocomposite. . Conclusions. Functionalisation of α-TCP/PLGA with BMP-2 produced osteoinduction and was dose-dependent. This material therefore has potential application as an osteoinductive agent in regenerative medicine


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 821 - 824
1 Jun 2008
Board TN Rooney P Kay PR

In order to investigate the osteoinductive properties of allograft used in impaction grafting and the effect of strain during impaction on these properties, we designed an in vitro experiment to measure strain-related release of bone morphogenetic protein-7 (BMP-7) from fresh-frozen femoral head allograft. A total of 40 10 mm cubes of cancellous bone were cut from ten samples of fresh-frozen femoral head. The marrow was removed from the cubes and the baseline concentrations of BMP-7 were measured. Specimens from each femoral head were allocated to four groups and subjected to different compressive strains with a material testing machine, after which BMP-7 activity was reassessed. It was present in all groups. There was a linear increase of 102.1 pg/g (95% confidence interval 68.6 to 135.6) BMP-7 for each 10% increase in strain. At 80% strain the mean concentration of BMP-7 released (830.3 pg/g bone) was approximately four times that released at 20% strain. Activity of BMP-7 in fresh-frozen allograft has not previously been demonstrated. This study shows that the freezing and storage of femoral heads allows some maintenance of biological activity, and that impaction grafting provides a source of osteoinductive bone for remodelling. We have shown that BMP-7 is released from fresh-frozen femoral head cancellous bone in proportion to the strain applied to the bone. This suggests that the impaction process itself may contribute to the biological process of remodelling and bony incorporation


Bone & Joint Research
Vol. 3, Issue 8 | Pages 246 - 251
1 Aug 2014
Chang YH Tai CL Hsu HY Hsieh PH Lee MS Ueng SWN

Objectives. The objective of this study was to compare the elution characteristics, antimicrobial activity and mechanical properties of antibiotic-loaded bone cement (ALBC) loaded with powdered antibiotic, powdered antibiotic with inert filler (xylitol), or liquid antibiotic, particularly focusing on vancomycin and amphotericin B. Methods. Cement specimens loaded with 2 g of vancomycin or amphotericin B powder (powder group), 2 g of antibiotic powder and 2 g of xylitol (xylitol group) or 12 ml of antibiotic solution containing 2 g of antibiotic (liquid group) were tested. Results. Vancomycin elution was enhanced by 234% in the liquid group and by 12% in the xylitol group compared with the powder group. Amphotericin B elution was enhanced by 265% in the liquid group and by 65% in the xylitol group compared with the powder group. Based on the disk-diffusion assay, the eluate samples of vancomycin-loaded ALBC of the liquid group exhibited a significantly larger inhibitory zone than samples of the powder or the xylitol group. Regarding the ALBCs loaded with amphotericin B, only the eluate samples of the liquid group exhibited a clear inhibitory zone, which was not observed in either the xylitol or the powder groups. The ultimate compressive strength was significantly reduced in specimens containing liquid antibiotics. Conclusions. Adding vancomycin or amphotericin B antibiotic powder in distilled water before mixing with bone cement can significantly improve the efficiency of antibiotic release than can loading ALBC with the same dose of antibiotic powder. This simple and effective method for preparation of ALBCs can significantly improve the efficiency of antibiotic release in ALBCs. Cite this article: Bone Joint Res 2014;3:246–51


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 693 - 700
1 May 2007
Ishii I Mizuta H Sei A Hirose J Kudo S Hiraki Y

We have investigated in vitro the release kinetics and bioactivity of fibroblast growth factor-2 (FGF-2) released from a carrier of fibrin sealant. In order to evaluate the effects of the FGF-2 delivery mechanism on the repair of articular cartilage, full-thickness cylindrical defects, 5 mm in diameter and 4 mm in depth, which were too large to undergo spontaneous repair, were created in the femoral trochlea of rabbit knees. These defects were then filled with the sealant. Approximately 50% of the FGF-2 was released from the sealant within 24 hours while its original bioactivity was maintained. The implantation of the fibrin sealant incorporating FGF-2 successfully induced healing of the surface with hyaline cartilage and concomitant repair of the subchondral bone at eight weeks after the creation of the defect. Our findings suggest that this delivery method for FGF-2 may be useful for promoting regenerative repair of full-thickness defects of articular cartilage in humans


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 393 - 399
1 Mar 2008
Morley JR Smith RM Pape HC MacDonald DA Trejdosiewitz LK Giannoudis PV

We have undertaken a prospective study in patients with a fracture of the femoral shaft requiring intramedullary nailing to test the hypothesis that the femoral canal could be a potential source of the second hit phenomenon. We determined the local femoral intramedullary and peripheral release of interleukin-6 (IL-6) after fracture and subsequent intramedullary reaming. In all patients, the fracture caused a significant increase in the local femoral concentrations of IL-6 compared to a femoral control group. The concentration of IL-6 in the local femoral environment was significantly higher than in the patients own matched blood samples from their peripheral circulation. The magnitude of the local femoral release of IL-6 after femoral fracture was independent of the injury severity score and whether the fracture was closed or open. In patients who underwent intramedullary reaming of the femoral canal a further significant local release of IL-6 was demonstrated, providing evidence that intramedullary reaming can cause a significant local inflammatory reaction


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1471 - 1474
1 Oct 2010
Chang Y Shih H Chen DW Lee MS Ueng SWN Hsieh P

We investigated the antibiotic concentration in fresh-frozen femoral head allografts harvested from two groups of living donors. Ten samples were collected from patients with osteoarthritis of the hip and ten from those with a fracture of the neck of the femur scheduled for primary arthroplasty. Cefazolin (1 g) was administered as a pre-operative prophylactic antibiotic. After storage at −80°C for two weeks the pattern of release of cefazolin from morsellised femoral heads was evaluated by an in vitro broth elution assay using high-performance liquid chromatography. The bioactivity of the bone was further determined with an agar disc diffusion and standardised tube dilution bioassay. The results indicated that the fresh-frozen femoral heads contained cefazolin. The morsellised bone released cefazolin for up to four days. The concentration of cefazolin was significantly higher in the heads from patients with osteoarthritis of the hip than in those with a fracture. Also, in bioassays the bone showed inhibitory effects against bacteria. We concluded that allografts of morsellised bone from the femoral head harvested from patients undergoing arthroplasty of the hip contained cefazolin, which had been administered pre-operatively and they exhibited inhibitory effects against bacteria in vitro


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 2 | Pages 295 - 299
1 Mar 2002
Brooks RA Wimhurst JA Rushton N

Particulate prosthetic materials are often studied by adding them to monocytic cells in vitro and measuring the release of cytokines as an indicator of their inflammatory potential. Endotoxin is known to be a contaminant of particle preparations and also stimulates the release of cytokines. It is usual to use a proprietary endotoxin test to avoid erroneous results. Four different formulations of cement were found to be free from endotoxin using standard, gelclot tests but stimulated different levels of release of cytokines from macrophages. These differences were explained when a more sensitive, kinetic endotoxin assay showed that release correlated with minor contamination with endotoxin. In a repeat experiment using cement particles with low or undetectable levels of endotoxin by kinetic assay, differences in the ability of the formulations to stimulate the release of cytokines were not seen. Endotoxin is adsorbed on to the surface of particles and it is this combination which stimulates increased release of cytokines. In both the above methods for determination of endotoxin, the water in which the particles had been soaked was examined rather than the particles directly. Further investigations showed that a kinetic assay directly on a particle suspension is the most sensitive method to measure contamination with endotoxin


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 924 - 930
1 Sep 1998
Lind M Trindade MCD Yaszay B Goodman SB Smith RL

The interactions between the different cell types in periprosthetic tissue are still unclear. We used a non-contact coculture model to investigate the effects of polymethylmethacrylate (PMMA) particles and human macrophage-derived soluble mediators on fibroblast activation. Macrophages were either exposed or not exposed to phagocytosable PMMA particles, but fibroblasts were not. Increasing numbers of macrophages were tested in cocultures in which the fibroblast cell number was held constant and cultures of macrophages alone were used for comparison of cytokine release. We used the release of interleukin-1 beta (IL-1β), interleukin 6 (IL-6), tumour necrosis factor alpha (TNF-α), lysosomal enzyme and metalloproteinase activity to assess the cultivation of macrophages and fibroblasts. In cocultures, IL-6 release was increased 100-fold for both unchallenged and particle-challenged cultures when compared with macrophage cultures alone. Furthermore, particle-challenged cocultures had threefold higher IL-6 levels than unchallenged cocultures. Release of TNF-α was similar in cocultures and in macrophage cultures. IL-1β release in cocultures was independent of the macrophage-fibroblast ratio. Lysosomal enzyme activity and metalloproteinase activity were increased in cocultures. Our data show that macrophages and fibroblasts in coculture significantly increase the release of IL-6 and to a less degree other inflammatory mediators; particle exposure accentuates this effect. This suggests that macrophage accumulation in fibrous tissue may lead to elevated IL-6 levels that are much higher than those caused by particle activation of macrophages alone. This macrophage-fibroblast interaction represents a novel concept for the initiation and maintenance of the inflammatory process in periprosthetic membranes


Bone & Joint Research
Vol. 6, Issue 1 | Pages 52 - 56
1 Jan 2017
Hothi HS Kendoff D Lausmann C Henckel J Gehrke T Skinner J Hart A

Objectives. Mechanical wear and corrosion at the head-stem junction of total hip arthroplasties (THAs) (trunnionosis) have been implicated in their early revision, most commonly in metal-on-metal (MOM) hips. We can isolate the role of the head-stem junction as the predominant source of metal release by investigating non-MOM hips; this can help to identify clinically significant volumes of material loss and corrosion from these surfaces. Methods. In this study we examined a series of 94 retrieved metal-on-polyethylene (MOP) hips for evidence of corrosion and material loss at the taper junction using a well published visual grading method and an established roundness-measuring machine protocol. Hips were retrieved from 74 male and 20 female patients with a median age of 57 years (30 to 76) and a median time to revision of 215 months (2 to 324). The reasons for revision were loosening of both the acetabular component and the stem (n = 29), loosening of the acetabular component (n = 58) and infection (n = 7). No adverse tissue reactions were reported by the revision surgeons. Results. Evidence of corrosion was observed in 55% of hips. The median Goldberg taper corrosion score was 2 (1 to 4) and the annual rate of material loss at the taper was 0.084 mm. 3. /year (0 to 0.239). The median trunnion corrosion score was 1 (1 to 3). Conclusions. We have reported a level of trunnionosis for MOP hips with large-diameter heads that were revised for reasons other than trunnionosis, and therefore may be clinically insignificant. Cite this article: H. S. Hothi, D. Kendoff, C. Lausmann, J. Henckel, T. Gehrke, J. Skinner, A. Hart. Clinically insignificant trunnionosis in large-diameter metal-on-polyethylene total hip arthroplasty. Bone Joint Res 2017;6:52–56. DOI: 10.1302/2046-3758.61.BJR-2016-0150.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1533 - 1538
1 Nov 2006
Meyer DC Lajtai G von Rechenberg B Pfirrmann CWA Gerber C

We released the infraspinatus tendons of six sheep, allowed retraction of the musculotendinous unit over a period of 40 weeks and then performed a repair. We studied retraction of the musculotendinous unit 35 weeks later using CT, MRI and macroscopic dissection. The tendon was retracted by a mean of 4.7 cm (3.8 to 5.1) 40 weeks after release and remained at a mean of 4.2 cm (3.3 to 4.7) 35 weeks after the repair. Retraction of the muscle was only a mean of 2.7 cm (2.0 to 3.3) and 1.7 cm (1.1 to 2.2) respectively at these two points. Thus, the musculotendinous junction had shifted distally by a mean of 2.5 cm (2.0 to 2.8) relative to the tendon. Sheep muscle showed an ability to compensate for approximately 60% of the tendon retraction in a hitherto unknown fashion. Such retraction may not be a quantitatively reliable indicator of retraction of the muscle and may overestimate the need for elongation of the musculotendinous unit during repair


Bone & Joint 360
Vol. 10, Issue 6 | Pages 48 - 50
1 Dec 2021
Evans JT French JMR Whitehouse MR


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 2 | Pages 311 - 315
1 Mar 1997
Rogers SD Howie DW Graves SE Pearcy MJ Haynes DR

Our aim was to determine whether in vitro studies would detect differences in the cellular response to wear particles of two titanium alloys commonly used in the manufacture of joint replacement prostheses. Particles were of the order of 1 μm in diameter representative of those found adjacent to failed prostheses. Exposure of human monocytes to titanium 6-aluminium 4- vanadium (TiAlV) at concentrations of 4 x 10. 7. particles/ml produced a mean prostaglandin E. 2. release of 2627.6 pM; this was significantly higher than the 317.4 pM induced by titanium 6-aluminium 7-niobium alloy (TiAlNb) particles (p = 0.006). Commercially-pure titanium particles induced a release of 347.8 pM. In addition, TiAlV stimulated significantly more release of the other cell mediators, interleukin-1, tumour necrosis factor and interleukin-6. At lower concentrations of particles there was less mediator release and less obvious differences between materials. None of the materials caused significant toxicity. The levels of inflammatory mediators released by phagocytic cells in response to wear particles may influence the amount of periprosthetic bone loss. Our findings have shown that in vitro studies can detect differences in cellular response induced by particles of similar titanium alloys in common clinical use, although in vivo studies have shown little difference. While in vitro studies should not be used as the only form of assessment, they must be considered when assessing the relative biocompatibility of different implant materials


Bone & Joint Research
Vol. 6, Issue 2 | Pages 98 - 107
1 Feb 2017
Kazemi D Shams Asenjan K Dehdilani N Parsa H

Objectives. Mesenchymal stem cells have the ability to differentiate into various cell types, and thus have emerged as promising alternatives to chondrocytes in cell-based cartilage repair methods. The aim of this experimental study was to investigate the effect of bone marrow derived mesenchymal stem cells combined with platelet rich fibrin on osteochondral defect repair and articular cartilage regeneration in a canine model. Methods. Osteochondral defects were created on the medial femoral condyles of 12 adult male mixed breed dogs. They were either treated with stem cells seeded on platelet rich fibrin or left empty. Macroscopic and histological evaluation of the repair tissue was conducted after four, 16 and 24 weeks using the International Cartilage Repair Society macroscopic and the O’Driscoll histological grading systems. Results were reported as mean and standard deviation (. sd. ) and compared at different time points between the two groups using the Mann-Whitney U test, with a value < 0.05 considered statistically significant. Results. Higher cumulative macroscopic and histological scores were observed in stem cell treated defects throughout the study period with significant differences noted at four and 24 weeks (9.25, . sd. 0.5 vs 7.25, . sd. 0.95, and 10, . sd. 0.81 vs 7.5, . sd. 0.57; p < 0.05) and 16 weeks (16.5, . sd. 4.04 vs 11, . sd. 1.15; p < 0.05), respectively. Superior gross and histological characteristics were also observed in stem cell treated defects. Conclusion. The use of autologous culture expanded bone marrow derived mesenchymal stem cells on platelet rich fibrin is a novel method for articular cartilage regeneration. It is postulated that platelet rich fibrin creates a suitable environment for proliferation and differentiation of stem cells by releasing endogenous growth factors resulting in creation of a hyaline-like reparative tissue. Cite this article: D. Kazemi, K. Shams Asenjan, N. Dehdilani, H. Parsa. Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: Macroscopic and histological assessments. Bone Joint Res 2017;6:98–107. DOI: 10.1302/2046-3758.62.BJR-2016-0188.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 2 | Pages 296 - 300
1 Mar 2004
Kanbe K Takemura T Takeuchi K Chen Q Takagishi K Inoue K

We have compared the concentrations of stromal-cell-derived factor-1 (SDF-1), matrix metalloproteinase-1 (MMP-1), MMP-9 and MMP-13 in serum before and after synovectomy or total knee replacement (TKR). We confirmed the presence of SDF-1 and its receptor CXCR4 in the synovium and articular cartilage by immunohistochemistry. We established chondrocytes by using mutant CXCR4 to block the release of MMPs. The level of SDF-1 was decreased 5.1- and 6.7-fold in the serum of patients with OA and RA respectively, after synovectomy compared with that before surgery. MMP-9 and MMP-13 were decreased in patients with OA and RA after synovectomy. We detected SDF-1 in the synovium and the bone marrow but not in cartilage. CXCR4 was detected in articular cartilage. SDF-1 increased the release of MMP-9 and MMP-13 from chondrocytes in a dose-dependent manner. The mutant CXCR4 blocked the release of MMP-9 and MMP-13 from chondrocytes by retrovirus vector. Synovectomy is effective in patients with OA or RA because SDF-1, which can regulate the release of MMP-9 and MMP-13 from articular chondrocytes for breakdown of cartilage, is removed by the operation