The intra-articular administration of tranexamic acid (TXA) has
been shown to be effective in reducing blood loss in unicompartmental
knee arthroplasty and anterior cruciate reconstruction. The effects
on human articular cartilage, however, remains unknown. Our aim,
in this study, was to investigate any detrimental effect of TXA
on chondrocytes, and to establish if there was a safe dose for its
use in clinical practice. The hypothesis was that TXA would cause
a dose-dependent damage to human articular cartilage. The cellular morphology, adhesion, metabolic activity, and viability
of human chondrocytes when increasing the concentration (0 mg/ml
to 40 mg/ml) and length of exposure to TXA (0 to 12 hours) were
analyzed in a 2D model. This was then repeated, excluding cellular
adhesion, in a 3D model and confirmed in viable samples of articular cartilage.Aims
Materials and Methods
We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells. We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy.Objectives
Materials and Methods
We used an A significant improvement in functional weight-bearing was observed between six and 12 weeks. The significant increase in ground reaction force through the operated limb between six and 12 weeks was greater than that reported previously with morcellised graft augmented reconstructions. Histological appearance and collagen fibre orientation with bone block augmentation more closely resembled that of an intact enthesis compared with the morcellised grafting technique. Bone block augmentation of tendon-implant interfaces results in more reliable functional and histological outcomes, with a return to pre-operative levels of weight-bearing by 24 weeks.