The treatment of tibial aplasia is controversial. Amputation represents the gold standard with good functional results, but is frequently refused by the families. In these patients, treatment with reconstructive limb salvage can be considered. Due to the complexity of the deformity, this remains challenging and should be staged. The present study evaluated the role of femoro-pedal distraction using a circular external fixator in reconstructive treatment of tibial aplasia. The purpose of femoro-pedal distraction is to realign the limb and achieve soft tissue lengthening to allow subsequent reconstructive surgery. This was a retrospective study involving ten patients (12 limbs) with tibial aplasia, who underwent staged reconstruction. During the first operation a circular hexapod external fixator was applied and femoro-pedal distraction was undertaken over several months. Subsequent surgery included reconstruction of the knee joint and alignment of the foot.Aims
Methods
The aim of this retrospective cohort study was to assess and investigate the safety and efficacy of using a distal tibial osteotomy compared to proximal osteotomy for limb lengthening in children. In this study, there were 59 consecutive tibial lengthening and deformity corrections in 57 children using a circular frame. All were performed or supervised by the senior author between January 2013 and June 2019. A total of 25 who underwent a distal tibial osteotomy were analyzed and compared to a group of 34 who had a standard proximal tibial osteotomy. For each patient, the primary diagnosis, time in frame, complications, and lengthening achieved were recorded. From these data, the frame index was calculated (days/cm) and analyzed.Aims
Methods
Survivors of infantile meningococcal septicaemia often develop progressive skeletal deformity as a result of physeal damage at many sites, particularly in the lower limb. Distal tibial physeal arrest typically occurs with sparing of the distal fibular physis leading to a rapidly progressive varus deformity. There have been reports of isolated cases of this deformity, but to our knowledge there have been no papers which specifically describe the development of the deformity and the options for treatment. Surgery to correct this deformity is complex because of the patient’s age, previous scarring and the multiplanar nature of the deformity. The surgical goal is to restore leg-length equality and the mechanical axis at the end of growth. Surgery should be planned and staged throughout growth in order to achieve the best functional results. We report our experience in six patients (seven ankles) with this deformity, who were managed by corrective osteotomy using a programmable circular fixator.
Septicaemia resulting from meningococcal infection is a devastating illness affecting children. Those who survive can develop late orthopaedic sequelae from growth plate arrests, with resultant complex deformities. Our aim in this study was to review the case histories of a series of patients with late orthopaedic sequelae, all treated by the senior author (CFB). We also describe a treatment strategy to address the multiple deformities that may occur in these patients. Between 1997 and 2009, ten patients (seven girls and three boys) were treated for late orthopaedic sequelae following meningococcal septicaemia. All had involvement of the lower limbs, and one also had involvement of the upper limbs. Each patient had a median of three operations (one to nine). Methods of treatment included a combination of angular deformity correction, limb lengthening and epiphysiodesis. All patients were skeletally mature at the final follow-up. One patient with bilateral below-knee amputations had satisfactory correction of her right amputation stump deformity, and has complete ablation of both her proximal tibial growth plates. In eight patients length discrepancy in the lower limb was corrected to within 1 cm, with normalisation of the mechanical axis of the lower limb. Meningococcal septicaemia can lead to late orthopaedic sequelae due to growth plate arrests. Central growth plate arrests lead to limb-length discrepancy and the need for lengthening procedures, and peripheral growth plate arrests lead to angular deformities requiring corrective osteotomies and ablation of the damaged physis. In addition, limb amputations may be necessary and there may be altered growth of the stump requiring further surgery. Long-term follow-up of these patients is essential to recognise and treat any recurrence of deformity.
Between 2005 and 2010 ten consecutive children
with high-energy open diaphyseal tibial fractures were treated by early
reduction and application of a programmable circular external fixator.
They were all male with a mean age of 11.5 years (5.2 to 15.4),
and they were followed for a mean of 34.5 months (6 to 77). Full
weight-bearing was allowed immediately post-operatively. The mean
time from application to removal of the frame was 16 weeks (12 to
21). The mean deformity following removal of the frame was 0.15°
(0° to 1.5°) of coronal angulation, 0.2° (0° to 2°) sagittal angulation,
1.1 mm (0 to 10) coronal translation, and 0.5 mm (0 to 2) sagittal
translation. All patients achieved consolidated bony union and satisfactory
wound healing. There were no cases of delayed or nonunion, compartment
syndrome or neurovascular injury. Four patients had a mild superficial
pin site infection; all settled with a single course of oral antibiotics.
No patient had a deep infection or re-fracture following removal
of the frame. The time to union was comparable with, or better than,
other published methods of stabilisation for these injuries. The
stable fixator configuration not only facilitates management of
the accompanying soft-tissue injury but enables anatomical post-injury
alignment, which is important in view of the limited remodelling
potential of the tibia in children aged >
ten years. Where appropriate
expertise exists, we recommend this technique for the management
of high-energy open tibial fractures in children.
We describe three cases of infantile tibia vara
resulting from an atraumatic slip of the proximal tibial epiphysis
upon the metaphysis. There appears to be an association between
this condition and severe obesity. Radiologically, the condition
is characterised by a dome-shaped metaphysis, an open growth plate
and disruption of the continuity between the lateral borders of
the epiphysis and metaphysis, with inferomedial translation of the
proximal tibial epiphysis. All patients were treated by realignment
of the proximal tibia by distraction osteogenesis with an external
circulator fixator, and it is suggested that this is the optimal
method for correction of this complex deformity. There are differences
in the radiological features and management between conventional
infantile Blount’s disease and this ‘slipped upper tibial epiphysis’
variant.
We report the outcome of 28 patients with spina bifida who between 1989 and 2006 underwent 43 lower extremity deformity corrections using the Ilizarov technique. The indications were a flexion deformity of the knee in 13 limbs, tibial rotational deformity in 11 and foot deformity in 19. The mean age at operation was 12.3 years (5.2 to 20.6). Patients had a mean of 1.6 previous operations (0 to 5) on the affected limb. The mean duration of treatment with a frame was 9.4 weeks (3 to 26) and the mean follow-up was 4.4 years (1 to 9). There were 12 problems (27.9%), five obstacles (11.6%) and 13 complications (30.2%) in the 43 procedures. Further operations were needed in seven patients. Three knees had significant recurrence of deformity. Two tibiae required further surgery for recurrence. All feet were plantigrade and braceable. We conclude that the Ilizarov technique offers a refreshing approach to the complex lower-limb deformity in spina bifida.