This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated. Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA).Aims
Methods
The management of radial nerve palsy associated with fractures of the shaft of the humerus has been disputed for several decades. This study has systematically reviewed the published evidence and developed an algorithm to guide management. We searched web-based databases for studies published in the past 40 years and identified further pages through manual searches of the bibliography in papers identified electronically. Of 391 papers identified initially, encompassing a total of 1045 patients with radial nerve palsy, 35 papers met all our criteria for eligibility. Meticulous extraction of the data was carried out according to a preset protocol. The overall prevalence of radial nerve palsy after fracture of the shaft of the humerus in 21 papers was 11.8% (532 palsies in 4517 fractures). Fractures of the middle and middle-distal parts of the shaft had a significantly higher association with radial nerve palsy than those in other parts. Transverse and spiral fractures were more likely to be associated with radial nerve palsy than oblique and comminuted patterns of fracture (p <
0.001). The overall rate of recovery was 88.1% (921 of 1045), with spontaneous recovery reaching 70.7% (411 of 581) in patients treated conservatively. There was no significant difference in the final results when comparing groups which were initially managed expectantly with those explored early, suggesting that the initial expectant treatment did not affect the extent of nerve recovery adversely and would avoid many unnecessary operations. A
Frozen shoulder is commonly encountered in general
orthopaedic practice. It may arise spontaneously without an obvious
predisposing cause, or be associated with a variety of local or
systemic disorders. Diagnosis is based upon the recognition of the
characteristic features of the pain, and selective limitation of
passive external rotation. The macroscopic and histological features
of the capsular contracture are well-defined, but the underlying
pathological processes remain poorly understood. It may cause protracted
disability, and imposes a considerable burden on health service
resources. Most patients are still managed by physiotherapy in primary
care, and only the more refractory cases are referred for specialist
intervention. Targeted therapy is not possible and treatment remains predominantly
symptomatic. However, over the last ten years, more active interventions
that may shorten the clinical course, such as capsular distension
arthrography and arthroscopic capsular release, have become more popular. . This review describes the clinical and pathological features
of frozen shoulder. We also outline the current treatment options,
review the published results and present our own
There is little information about the management
of peri-prosthetic fracture of the humerus after total shoulder replacement
(TSR). This is a retrospective review of 22 patients who underwent
a revision of their original shoulder replacement for peri-prosthetic
fracture of the humerus with bone loss and/or loose components.
There were 20 women and two men with a mean age of 75 years (61
to 90) and a mean follow-up 42 months (12 to 91): 16 of these had
undergone a previous revision TSR. Of the 22 patients, 12 were treated
with a long-stemmed humeral component that bypassed the fracture.
All their fractures united after a mean of 27 weeks (13 to 94).
Eight patients underwent resection of the proximal humerus with
endoprosthetic replacement to the level of the fracture. Two patients
were managed with a clam-shell prosthesis that retained the original
components. The mean Oxford shoulder score (OSS) of the original
TSRs before peri-prosthetic fracture was 33 (14 to 48). The mean
OSS after revision for fracture was 25 (9 to 31). Kaplan-Meier survival
using re-intervention for any reason as the endpoint was 91% (95%
confidence interval (CI) 68 to 98) and 60% (95% CI 30 to 80) at
one and five years, respectively. There were two revisions for dislocation of the humeral head,
one open reduction for modular humeral component dissociation, one
internal fixation for nonunion, one trimming of a prominent screw
and one re-cementation for aseptic loosening complicated by infection,
ultimately requiring excision arthroplasty. Two patients sustained
nerve palsies. Revision TSR after a peri-prosthetic humeral fracture associated
with bone loss and/or loose components is a salvage procedure that
can provide a stable platform for elbow and hand function. Good
rates of union can be achieved using a stem that bypasses the fracture.
There is a high rate of complications and function is not as good as
with the original replacement.