The aim of this study was to assess the safety and clinical outcome of patients with a femoral shaft fracture and a previous complex post-traumatic femoral malunion who were treated with a clamshell osteotomy and fixation with an intramedullary nail (IMN). The study involved a retrospective analysis of 23 patients. All had a previous, operatively managed, femoral shaft fracture with malunion due to hardware failure. They were treated with a clamshell osteotomy between May 2015 and March 2020. The mean age was 42.6 years (26 to 62) and 15 (65.2%) were male. The mean follow-up was 2.3 years (1 to 5). Details from their medical records were analyzed. Clinical outcomes were assessed using the quality of correction of the deformity, functional recovery, the healing time of the fracture, and complications.Aims
Methods
The purpose of this study was to: review the efficacy of the induced membrane technique (IMT), also known as the Masquelet technique; and investigate the relationship between patient factors and technique variations on the outcomes of the IMT. A systematic search was performed in CINAHL, The Cochrane Library, Embase, Ovid MEDLINE, and PubMed. We included articles from 1 January 1980 to 30 September 2019. Studies with a minimum sample size of five cases, where the IMT was performed primarily in adult patients (≥ 18 years old), in a long bone were included. Multivariate regression models were performed on patient-level data to determine variables associated with nonunion, postoperative infection, and the need for additional procedures.Aims
Methods
A successful outcome following treatment of nonunion requires the correct identification of all of the underlying cause(s) and addressing them appropriately. The aim of this study was to assess the distribution and frequency of causative factors in a consecutive cohort of nonunion patients in order to optimise the management strategy for individual patients presenting with nonunion. Causes of the nonunion were divided into four categories: mechanical; infection; dead bone with a gap; and host. Prospective and retrospective data of 100 consecutive patients who had undergone surgery for long bone fracture nonunion were analysed.Objectives
Methods
To evaluate the effect of a single early high-dose vitamin D
supplement on fracture union in patients with hypovitaminosis D
and a long bone fracture. Between July 2011 and August 2013, 113 adults with a long bone
fracture were enrolled in a prospective randomised double-blind
placebo-controlled trial. Their serum vitamin D levels were measured
and a total of 100 patients were found to be vitamin D deficient
(<
20 ng/ml) or insufficient (<
30 ng/mL). These were then
randomised to receive a single dose of vitamin D3 orally
(100 000 IU) within two weeks of injury (treatment group, n = 50)
or a placebo (control group, n = 50). We recorded patient demographics,
fracture location and treatment, vitamin D level, time to fracture
union and complications, including vitamin D toxicity. Outcomes included union, nonunion or complication requiring an
early, unplanned secondary procedure. Patients without an outcome
at 15 months and no scheduled follow-up were considered lost to
follow-up. The Aims
Patients and Methods
The aim of this study was to identify risk factors for the failure
of exchange nailing in nonunion of tibial diaphyseal fractures. A cohort of 102 tibial diaphyseal nonunions in 101 patients with
a mean age of 36.9 years (15 to 74) were treated between January
1992 and December 2012 by exchange nailing. Of which 33 (32%) were
initially open injuries. The median time from primary fixation to
exchange nailing was 6.5 months (interquartile range (IQR) 4.3 to
9.8 months). The main outcome measures were union, number of secondary fixation
procedures required to achieve union and time to union. Univariate analysis and multiple regression were used to identify
risk factors for failure to achieve union. Aims
Patients and Methods
This article presents a unified clinical theory
that links established facts about the physiology of bone and homeostasis,
with those involved in the healing of fractures and the development
of nonunion. The key to this theory is the concept that the tissue
that forms in and around a fracture should be considered a specific
functional entity. This ‘bone-healing unit’ produces a physiological
response to its biological and mechanical environment, which leads
to the normal healing of bone. This tissue responds to mechanical
forces and functions according to Wolff’s law, Perren’s strain theory
and Frost’s concept of the “mechanostat”. In response to the local
mechanical environment, the bone-healing unit normally changes with
time, producing different tissues that can tolerate various levels
of strain. The normal result is the formation of bone that bridges
the fracture – healing by callus. Nonunion occurs when the bone-healing
unit fails either due to mechanical or biological problems or a
combination of both. In clinical practice, the majority of nonunions
are due to mechanical problems with instability, resulting in too
much strain at the fracture site. In most nonunions, there is an
intact bone-healing unit. We suggest that this maintains its biological
potential to heal, but fails to function due to the mechanical conditions.
The theory predicts the healing pattern of multifragmentary fractures
and the observed morphological characteristics of different nonunions.
It suggests that the majority of nonunions will heal if the correct
mechanical environment is produced by surgery, without the need
for biological adjuncts such as autologous bone graft. Cite this article: