Advertisement for orthosearch.org.uk
Results 1 - 20 of 103
Results per page:
The Bone & Joint Journal
Vol. 107-B, Issue 1 | Pages 58 - 64
1 Jan 2025
Carender CN Bedard NA Fruth KM Taunton MJ Pagnano MW Abdel MP

Aims. The purpose of this study was to directly compare the Modular Dual Mobility (MDM) Mobile Bearing Hip System (Stryker, USA) and large femoral heads (LFHs) in revision total hip arthroplasties (THAs) at mid-term follow-up, with specific emphasis on survival free of re-revision for dislocation, any re-revision, dislocation, and the risk of metal-related complications. Methods. We identified 299 revision THAs performed at a single tertiary care academic institution from March 2011 to July 2014. Aseptic loosening of the acetabular component (n = 65), dislocation (n = 58), and reimplantation as part of a two-stage exchange protocol (n = 57) were the most common reasons for index revision. MDM constructs were used in 123 cases, and LFHs were used in 176 cases. Mean age was 66 years (28 to 93), mean BMI was 31 kg/m. 2. (18 to 55), and 45% (n = 136) were female. Mean follow-up was seven years (2 to 12). Results. The ten-year survival free of re-revision for dislocation was 99% (95% CI 95 to 100) in the MDM cohort and 91% (95% CI 84 to 96) in the LFH cohort, with a significantly increased risk of re-revision for dislocation in the LFH cohort (HR 7.1 (95% CI 1.3 to 40.8); p = 0.023). The ten-year survival free of any re-revision was 92% (95% CI 82 to 99%) in the MDM cohort and 84% (95% CI 74 to 90) in the LFH cohort with a significantly increased risk of any re-revision in the LFH cohort (HR 2.6 (95% CI 1.1 to 5.9); p = 0.024). The ten-year survival free of any dislocation was 95% (95% CI 85 to 99) in the MDM cohort and 87% (95% CI 78 to 92) in the LFH cohort with a significantly increased risk of any dislocation in the LFH cohort (HR 2.7 (95% CI 1.1 to 6.3); p = 0.028). There were no re-revisions or reoperations for metallosis or corrosion in the MDM cohort. Conclusion. In this head-to-head comparison, revision THAs with a MDM construct safely and effectively lowered the risk of re-revision for dislocation, any re-revision, and any dislocation compared to LFH at mid-term follow-up. There were no re-revisions or reoperations for metallosis or corrosion in the MDM cohort. Cite this article: Bone Joint J 2025;107-B(1):58–64


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 29 - 34
1 Jan 2023
Fransen BL Bengoa FJ Neufeld ME Sheridan GA Garbuz DS Howard LC

Aims

Several short- and mid-term studies have shown minimal liner wear of highly cross-linked polyethylene (HXLPE) in total hip arthroplasty (THA), but the safety of using thinner HXLPE liners to maximize femoral head size remains uncertain. The objective of this study was to analyze clinical survival and radiological wear rates of patients with HXLPE liners, a 36 mm femoral head, and a small acetabular component with a minimum of ten years’ follow-up.

Methods

We retrospectively identified 55 patients who underwent primary THA performed at a single centre, using HXLPE liners with 36 mm cobalt-chrome heads in acetabular components with an outer diameter of 52 mm or smaller. Patient demographic details, implant details, death, and all-cause revisions were recorded. Cox regression and Kaplan-Meier survival was used to determine all-cause and liner-specific revision. Of these 55 patients, 22 had a minimum radiological follow-up of seven years and were assessed radiologically for linear and volumetric wear.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 63 - 66
1 Nov 2013
Rodriguez JA Cooper HJ

Large ceramic femoral heads offer several advantages that are potentially advantageous to patients undergoing both primary and revision total hip replacement. Many high-quality studies have demonstrated the benefit of large femoral heads in reducing post-operative instability. Ceramic femoral heads may also offer an advantage in reducing polyethylene wear that has been reported in vitro and is starting to become clinically apparent in mid-term clinical outcome studies. Additionally, the risk of taper corrosion at a ceramic femoral head–neck junction is clearly lower than when using a metal femoral head. With improvements in the material properties of both modern ceramic femoral heads and polyethylene acetabular liners that have reduced the risk of mechanical complications, large ceramic heads have gained popularity in recent years. Cite this article: Bone Joint J 2013;95-B, Supple A:63–6


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1604 - 1610
1 Dec 2016
Callary SA Field JR Campbell DG

Aims

The increased in vivo resistance to wear of highly crosslinked polyethylene (HXLPE) in total hip arthroplasty (THA) has led to an increased use of larger articulations which have been shown to reduce the incidence of early dislocation. To date, there are few reports of the wear of larger articulations using second generation HXLPE liners. Our prospective cohort study measured the bedding-in and early wear of large (36 mm and 40 mm diameter) articulations involving a second generation X3 HXLPE liner and compared our findings with previous clinical and in vitro studies of the same material.

Patients and Methods

The proximal penetration of the femoral head five years post-operatively was measured for 15 patients using radiostereometric analysis (RSA).


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 23 - 26
1 Nov 2014
Cooper HJ Della Valle CJ

Dislocation remains among the most common complications of, and reasons for, revision of both primary and revision total hip replacements (THR). Hence, there is great interest in maximising stability to prevent this complication. Head size has been recognised to have a strong influence on the risk of dislocation post-operatively. As femoral head size increases, stability is augmented, secondary to an increase in impingement-free range of movement. Larger head sizes also greatly increase the ‘jump distance’ required for the head to dislocate in an appropriately positioned cup. Level-one studies support the use of larger diameter heads as they decrease the risk of dislocation following primary and revision THR. Highly cross-linked polyethylene has allowed us to increase femoral head size, without a marked increase in wear. However, the thin polyethylene liners necessary to accommodate larger heads may increase the risk of liner fracture and larger heads have also been implicated in causing soft-tissue impingement resulting in groin pain. Larger diameter heads also impart larger forces on the femoral trunnion, which may contribute to corrosion, metal release, and adverse local tissue reactions. Alternative large bearings including large ceramic heads and dual mobility bearings may mitigate some of these risks, and several of these devices have been used with clinical success.

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):23–6.


The Bone & Joint Journal
Vol. 107-B, Issue 1 | Pages 50 - 57
1 Jan 2025
Hussein Y Iljazi A Sørensen MS Overgaard S Petersen MM

Aims. Dislocation is a major concern following total hip arthroplasty (THA) for osteoarthritis (OA). Both dual-mobility components and standard acetabular components with large femoral heads are used to reduce the risk of dislocation. We investigated whether dual-mobility components are superior to standard components in reducing the two-year dislocation and revision risk in a propensity-matched sample from the Danish Hip Arthroplasty Register (DHR). Methods. This population-based cohort study analyzed data from the DHR and the Danish National Patient Register. We included all patients undergoing primary THA for OA from January 2010 to December 2019 with either dual-mobility or standard acetabular components with metal-on-polyethylene or ceramic-on-polyethylene articulations with a 36 mm femoral head. The samples were propensity score-matched on patient and implant characteristics. The primary outcome was the difference in the absolute risk of dislocation within two years, with a secondary outcome of the difference in the absolute risk of revision surgery of any cause within the same timeframe. The cumulative incidence of dislocation was calculated using the Aalen-Johansen estimator, while the difference in absolute risk was estimated using absolute risk regression (ARR). Results. We included 4,499 patients with dual-mobility components and 4,499 patients with standard components after propensity score-matching. Both groups had a mean age of 75 years (SD 8.5), included approximately 60% females, and had a two-year survival of 95.3% (95% CI 94.6 to 95.9). The dual-mobility group was 80% less likely to dislocate within two years (ARR 0.20 (95% CI 0.14 to 0.28); p < 0.001), with no significant difference in the risk of revision compared to standard components (ARR 1.15 (95% CI 0.89 to 1.48); p = 0.293). Conclusion. Dual-mobility components are associated with a reduced risk of dislocation and with no significant difference in the risk of revision for any cause within two years of THA when compared to standard acetabular components with 36 mm femoral heads. Cite this article: Bone Joint J 2025;107-B(1):50–57


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 52 - 54
1 Nov 2012
Rodriguez JA Rathod PA

Large femoral heads have been used with increasing frequency over the last decade. The prime reason is likely the effect of large heads on stability. The larger head neck ratio, combined with the increased jump distance of larger heads result in a greater arc of impingement free motion, and greater resistance to dislocation in a provocative position. Multiple studies have demonstrated clear clinical efficacy in diminishing dislocation rates with the use of large femoral heads. With crosslinked polyethylene, wear has been shown to be equivalent between larger and smaller heads. However, the stability advantages of increasing diameter beyond 38 mm have not been clearly demonstrated. More importantly, recent data implicates large heads in the increasing prevalence of groin pain and psoas impingement. There are clear benefits with larger femoral head diameters, but the advantages of diameters beyond 38 mm have not yet been demonstrated clinically


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1018 - 1024
1 Aug 2018
Ando W Yasui H Yamamoto K Oinuma K Tokunaga H Inaba Y Kobayashi N Aihara M Nakanishi R Ohzono K

Aims. The purpose of this study was to compare two different types of metal-on-metal (MoM) bearing for total hip arthroplasty (THA): one with a large femoral head (38 mm to 52 mm) and the other with a conventional femoral head (28 mm or 32 mm). We compared clinical outcome, blood metal ion levels, and the incidence of pseudotumour in the two groups. Patients and Methods. Between December 2009 and December 2011, 62 patients underwent MoM THA with a large femoral head (Magnum group) and 57 patients an MoM THA with a conventional femoral head (conventional group). Clinical outcome was assessed using the Harris Hip score, University of California, Los Angeles (UCLA) activity score and EuroQol-5D (EQ-5D). Blood metal ion levels were measured and MRI scans were analyzed at a minimum of five years postoperatively. Results. No acetabular component was implanted with more than 50° of inclination in either group. The Harris Hip Score, UCLA activity score, and EQ-5D improved postoperatively in both groups; no significant clinical differences were noted between the groups. The blood cobalt ion levels in the conventional group continued to rise postoperatively to five years while reaching a plateau at two years postoperatively in the Magnum group. At five years, the mean cobalt ion level of 1.16 μg/l (. sd. 1.32) in the Magnum group was significantly lower than the 3.77 μg/l (. sd. 9.80) seen in the conventional group (p = 0.0015). The incidence of moderate to severe pseudotumour was 4.7% in the Magnum group and 20.6% in the conventional group. There were no dislocations in the Magnum group and two in the conventional group. One patient in the Magnum group underwent revision for pseudotumour at 4.7 years postoperatively. Conclusion. At five years, a well-positioned large head MoM THA has a significantly lower level of metal ion release and a lower incidence of moderate to severe pseudotumour than a MoM bearing of conventional size. Cite this article: Bone Joint J 2018;100-B:1018–24


The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1035 - 1041
1 Sep 2019
Markel DC Bou-Akl T Rossi MD Pizzimenti N Wu B Ren W

Aims. The aim of this study was to evaluate blood metal ion levels, leucocyte profiles, and serum cytokines in patients with a total hip arthroplasty (THA) involving modular dual-mobility components. Patients and Methods. A total of 39 patients were recruited, with clinical follow-up of up to two years. Outcome was assessed using the Harris Hip Score (HHS, the 12-Item Short-Form Health Survey (SF-12), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and a visual analogue scale (VAS) for pain. Blood concentrations of cobalt (Co), chromium (Cr), and serum cytokines were measured. Subpopulations of leucocytes were analyzed by flow cytometry. Results. The clinical performance was good. Blood Co levels (ref 1.0 µg/l) were mildly elevated in seven patients at three months, and two patients at two years’ follow-up. The preoperative Cr levels were normal except for one patient with a detectable Cr (1.2 µg/l). Cr levels were detectable in three patients at three months, two patients at one year, and three patients at two years’ follow-up. No patients had symptoms suggestive of failure. Although flow cytometry showed constant circulating leucocyte profiles, there was a significant reduction of serum interleukin (IL)-4, IL-5, and interferon gamma (IFNγ) postoperatively compared with the preoperative levels (p < 0.05). Conclusion. These results suggest that THA using modular dual-mobility components is safe. This allows an opportunity to use a large femoral head and a thick polyethylene bearing surface, which is especially useful in revision procedures or high-risk situations when added stability is required. Cite this article: Bone Joint J 2019;101-B:1035–1041


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 832 - 837
1 Jul 2020
Dover C Kuiper JH Craig P Shaylor P

Aims. We have previously demonstrated raised cobalt and chromium levels in patients with larger diameter femoral heads, following metal-on-polyethylene uncemented total hip arthroplasty. Further data have been collected, to see whether these associations have altered with time and to determine the long-term implications for these patients and our practice. Methods. Patients from our previous study who underwent Trident-Accolade primary total hip arthroplasties using a metal-on-polyethylene bearing in 2009 were reviewed. Patients were invited to have their cobalt and chromium levels retested, and were provided an Oxford Hip Score. Serum ion levels were then compared between groups (28 mm, 36 mm, and 40 mm heads) and over time. Results. Metal ion levels were repeated in 33 patients. When comparing the results of serum metal ion levels over time, regardless of head size, there was a significant increase in both cobalt and chromium levels (p < 0.001). Two patients with larger head sizes had undergone revision arthroplasty with evidence of trunnion damage at surgery. Two patients within the 40 mm subgroup had metal ion levels above the MHRA (Medicines and Healthcare Products Regulatory Agency) threshold for detailed investigation. The increase in cobalt and chromium, when comparing the 36 mm and 40 mm groups with those of the 28 mm group, was not significant (36 mm vs 28 mm; p = 0.092/p = 0.191; 40 mm vs 28 mm; p = 0.200/p = 0.091, respectively). There was no difference, between femoral head sizes, when comparing outcome as measured by the Oxford Hip Score. Conclusion. This study shows an increase in cobalt and chromium levels over time for all modular femoral head sizes in patients with metal-on-polyethylene bearings, with two patients demonstrating ion levels above the MHRA threshold for failure, and a further two patients requiring revision surgery. These results may have clinical implications regarding longer term follow-up of patients and future implant choice, particularly among younger patients. Cite this article: Bone Joint J 2020;102-B(7):832–837


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 555 - 564
1 Jun 2024
Leal J Holland CT Cochrane NH Seyler TM Jiranek WA Wellman SS Bolognesi MP Ryan SP

Aims

This study aims to assess the relationship between history of pseudotumour formation secondary to metal-on-metal (MoM) implants and periprosthetic joint infection (PJI) rate, as well as establish ESR and CRP thresholds that are suggestive of infection in these patients. We hypothesized that patients with a pseudotumour were at increased risk of infection.

Methods

A total of 1,171 total hip arthroplasty (THA) patients with MoM articulations from August 2000 to March 2014 were retrospectively identified. Of those, 328 patients underwent metal artefact reduction sequence MRI and had minimum two years’ clinical follow-up, and met our inclusion criteria. Data collected included demographic details, surgical indication, laterality, implants used, history of pseudotumour, and their corresponding preoperative ESR (mm/hr) and CRP (mg/dl) levels. Multivariate logistic regression modelling was used to evaluate PJI and history of pseudotumour, and receiver operating characteristic curves were created to assess the diagnostic capabilities of ESR and CRP to determine the presence of infection in patients undergoing revision surgery.


Bone & Joint Open
Vol. 4, Issue 1 | Pages 3 - 12
4 Jan 2023
Hardwick-Morris M Twiggs J Miles B Al-Dirini RMA Taylor M Balakumar J Walter WL

Aims

Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation.

Methods

This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC).


Bone & Joint Open
Vol. 4, Issue 11 | Pages 839 - 845
6 Nov 2023
Callary SA Sharma DK D’Apollonio TM Campbell DG

Aims

Radiostereometric analysis (RSA) is the most accurate radiological method to measure in vivo wear of highly cross-linked polyethylene (XLPE) acetabular components. We have previously reported very low wear rates for a sequentially irradiated and annealed X3 XLPE liner (Stryker Orthopaedics, USA) when used in conjunction with a 32 mm femoral heads at ten-year follow-up. Only two studies have reported the long-term wear rate of X3 liners used in conjunction with larger heads using plain radiographs which have poor sensitivity. The aim of this study was to measure the ten-year wear of thin X3 XLPE liners against larger 36 or 40 mm articulations with RSA.

Methods

We prospectively reviewed 19 patients who underwent primary cementless THA with the XLPE acetabular liner (X3) and a 36 or 40 mm femoral head with a resultant liner thickness of at least 5.8 mm. RSA radiographs at one week, six months, and one, two, five, and ten years postoperatively and femoral head penetration within the acetabular component were measured with UmRSA software. Of the initial 19 patients, 12 were available at the ten-year time point.


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 352 - 358
1 Apr 2024
Wilson JM Trousdale RT Bedard NA Lewallen DG Berry DJ Abdel MP

Aims

Dislocation remains a leading cause of failure following revision total hip arthroplasty (THA). While dual-mobility (DM) bearings have been shown to mitigate this risk, options are limited when retaining or implanting an uncemented shell without modular DM options. In these circumstances, a monoblock DM cup, designed for cementing, can be cemented into an uncemented acetabular shell. The goal of this study was to describe the implant survival, complications, and radiological outcomes of this construct.

Methods

We identified 64 patients (65 hips) who had a single-design cemented DM cup cemented into an uncemented acetabular shell during revision THA between 2018 and 2020 at our institution. Cups were cemented into either uncemented cups designed for liner cementing (n = 48; 74%) or retained (n = 17; 26%) acetabular components. Median outer head diameter was 42 mm. Mean age was 69 years (SD 11), mean BMI was 32 kg/m2 (SD 8), and 52% (n = 34) were female. Survival was assessed using Kaplan-Meier methods. Mean follow-up was two years (SD 0.97).


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1339 - 1343
1 Oct 2012
Cross MB Dolan MM Sidhu GS Nguyen J Mayman DJ Su EP

The purpose of this study was to compare the amount of acetabular bone removed during hip resurfacing (HR) and cementless total hip replacement (THR), after controlling for the diameter of the patient’s native femoral head. Based on a power analysis, 64 consecutive patients (68 hips) undergoing HR or THR were prospectively enrolled in the study. The following data were recorded intra-operatively: the diameter of the native femoral head, the largest reamer used, the final size of the acetabular component, the size of the prosthetic femoral head and whether a decision was made to increase the size of the acetabular component in order to accommodate a larger prosthetic femoral head. Results were compared using two-sided, independent samples Student’s t-tests. A statistically significant difference was seen in the mean ratio of the size of the acetabular component to the diameter of the native femoral head (HR: 1.05 (. sd. 0.04) versus THR: 1.09 (. sd. 0.05); p <  0.001) and largest acetabular reamer used to the diameter of the native femoral head (HR: 1.03 (. sd. 0.04) versus THR: 1.09 (. sd. 0.05); p < 0.001). The ratios varied minimally when the groups were subdivided by gender, age and obesity. The decision to increase the size of the acetabular component to accommodate a larger femoral head occurred more often in the THR group (27% versus 9%). Despite the emphasis on avoiding damage to the femoral neck during HR, the ratio of the size of the acetabular component to the diameter of the native femoral head was larger in cementless THR than in HR


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 876 - 880
1 Jul 2011
Jameson SS Lees D James P Serrano-Pedraza I Partington PF Muller SD Meek RMD Reed MR

Increased femoral head size may reduce dislocation rates following total hip replacement. The National Joint Registry for England and Wales has highlighted a statistically significant increase in the use of femoral heads ≥ 36 mm in diameter from 5% in 2005 to 26% in 2009, together with an increase in the use of the posterior approach. The aim of this study was to determine whether rates of dislocation have fallen over the same period. National data for England for 247 546 procedures were analysed in order to determine trends in the rate of dislocation at three, six, 12 and 18 months after operation during this time. The 18-month revision rates were also examined. Between 2005 and 2009 there were significant decreases in cumulative dislocations at three months (1.12% to 0.86%), six months (1.25% to 0.96%) and 12 months (1.42% to 1.11%) (all p < 0.001), and at 18 months (1.56% to 1.31%) for the period 2005 to 2008 (p < 0.001). The 18-month revision rates did not significantly change during the study period (1.26% to 1.39%, odds ratio 1.10 (95% confidence interval 0.98 to 1.24), p = 0.118). There was no evidence of changes in the coding of dislocations during this time. These data have revealed a significant reduction in dislocations associated with the use of large femoral head sizes, with no change in the 18-month revision rate


Bone & Joint Open
Vol. 3, Issue 11 | Pages 877 - 884
14 Nov 2022
Archer H Reine S Alshaikhsalama A Wells J Kohli A Vazquez L Hummer A DiFranco MD Ljuhar R Xi Y Chhabra A

Aims

Hip dysplasia (HD) leads to premature osteoarthritis. Timely detection and correction of HD has been shown to improve pain, functional status, and hip longevity. Several time-consuming radiological measurements are currently used to confirm HD. An artificial intelligence (AI) software named HIPPO automatically locates anatomical landmarks on anteroposterior pelvis radiographs and performs the needed measurements. The primary aim of this study was to assess the reliability of this tool as compared to multi-reader evaluation in clinically proven cases of adult HD. The secondary aims were to assess the time savings achieved and evaluate inter-reader assessment.

Methods

A consecutive preoperative sample of 130 HD patients (256 hips) was used. This cohort included 82.3% females (n = 107) and 17.7% males (n = 23) with median patient age of 28.6 years (interquartile range (IQR) 22.5 to 37.2). Three trained readers’ measurements were compared to AI outputs of lateral centre-edge angle (LCEA), caput-collum-diaphyseal (CCD) angle, pelvic obliquity, Tönnis angle, Sharp’s angle, and femoral head coverage. Intraclass correlation coefficients (ICC) and Bland-Altman analyses were obtained.


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1032 - 1038
1 Sep 2022
García-Rey E Cruz-Pardos A Saldaña L

Aims

A significant reduction in wear at five and ten years was previously reported when comparing Durasul highly cross-linked polyethylene with nitrogen-sterilized Sulene polyethylene in total hip arthroplasty (THA). We investigated whether the improvement observed at the earlier follow-up continued, resulting in decreased osteolysis and revision surgery rates over the second decade.

Methods

Between January 1999 and December 2001, 90 patients underwent surgery using the same acetabular and femoral components with a 28 mm metallic femoral head and either a Durasul or Sulene liner. A total of 66 hips of this prospective randomized study were available for a minimum follow-up of 20 years. The linear femoral head penetration rate was measured at six weeks, one year, and annually thereafter, using the Dorr method on digitized radiographs with a software package.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 64 - 67
1 Jan 2016
Lachiewicz PF Watters TS

The ‘jumbo’ acetabular component is now commonly used in acetabular revision surgery where there is extensive bone loss. It offers high surface contact, permits weight bearing over a large area of the pelvis, the need for bone grafting is reduced and it is usually possible to restore centre of rotation of the hip. Disadvantages of its use include a technique in which bone structure may not be restored, a risk of excessive posterior bone loss during reaming, an obligation to employ screw fixation, limited bone ingrowth with late failure and high hip centre, leading to increased risk of dislocation. Contraindications include unaddressed pelvic dissociation, inability to implant the component with a rim fit, and an inability to achieve screw fixation. Use in acetabulae with < 50% bone stock has also been questioned. Published results have been encouraging in the first decade, with late failures predominantly because of polyethylene wear and aseptic loosening. Dislocation is the most common complication of jumbo acetabular revisions, with an incidence of approximately 10%, and often mandates revision. Based on published results, a hemispherical component with an enhanced porous coating, highly cross-linked polyethylene, and a large femoral head appears to represent the optimum tribology for jumbo acetabular revisions. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):64–7


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 1 | Pages 31 - 34
1 Jan 2006
Loughead JM Starks I Chesney D Matthews JNS McCaskie AW Holland JP

Resurfacing arthroplasty of the hip is being performed more frequently in the United Kingdom. The majority of these patients are younger than 55 years of age, and in this group the key benefits include conservation of femoral bone stock and the potential reduction in the rate of dislocation afforded by the larger resurfacing head. Early aseptic loosening is well recognised in patients younger than 55 years of age, and proponents of resurfacing believe that the improved wear characteristics of the metal-on-metal bearing may improve the long-term survival of this implant. There has been some concern, however, that resurfacing may not be conservative of acetabular bone. We compared a series of 33 consecutive patients who had a hybrid total hip arthroplasty with an uncemented acetabular component and a cemented femoral implant, with 35 patients undergoing a Birmingham hip resurfacing arthroplasty. We compared the diameter of the implanted acetabulum in both groups and, because they were not directly comparable, we corrected for patient size by measuring the diameter of the contralateral femoral head. The data were analysed using unpaired t-tests and analysis of covariance. There was a significantly larger acetabulum in the Birmingham arthroplasty group (mean diameter 56.6 mm vs 52.0 mm; p < 0.001). However, this group had a significantly larger femoral head diameter on the contralateral side (p = 0.03). Analysis of covariance revealed a significant difference between the mean size of the acetabular component implanted in the two operations. The greatest difference in the size of acetabulum was in those patients with a larger diameter of the femoral head. This study shows that more bone is removed from the acetabulum in hip resurfacing than during hybrid total hip arthroplasty, a difference which is most marked in larger patients