Advertisement for orthosearch.org.uk
Results 1 - 17 of 17
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 72 - 81
1 Jan 2023
Stake IK Ræder BW Gregersen MG Molund M Wang J Madsen JE Husebye EE

Aims

The aim of this study was to compare the functional and radiological outcomes and the complication rate after nail and plate fixation of unstable fractures of the ankle in elderly patients.

Methods

In this multicentre study, 120 patients aged ≥ 60 years with an acute unstable AO/OTA type 44-B fracture of the ankle were randomized to fixation with either a nail or a plate and followed for 24 months after surgery. The primary outcome measure was the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot score. Secondary outcome measures were the Manchester-Oxford Foot Questionnaire, the Olerud and Molander Ankle score, the EuroQol five-dimension questionnaire, a visual analogue score for pain, complications, the quality of reduction of the fracture, nonunion, and the development of osteoarthritis.


The Bone & Joint Journal
Vol. 100-B, Issue 1 | Pages 95 - 100
1 Jan 2018
Evers J Fischer M Zderic I Wähnert D Richards RG Gueorguiev B Raschke MJ Ochman S

Aims. The aim of this study was to investigate the effect of a posterior malleolar fragment (PMF), with < 25% ankle joint surface, on pressure distribution and joint-stability. There is still little scientific evidence available to advise on the size of PMF, which is essential to provide treatment. To date, studies show inconsistent results and recommendations for surgical treatment date from 1940. Materials and Methods. A total of 12 cadaveric ankles were assigned to two study groups. A trimalleolar fracture was created, followed by open reduction and internal fixation. PMF was fixed in Group I, but not in Group II. Intra-articular pressure was measured and cyclic loading was performed. Results. Contact area decreased following each fracture, while anatomical fixation restored it nearly to its intact level. Contact pressure decreased significantly with fixation of the PMF. In plantarflexion, the centre of force shifted significantly posteriorly in Group II and anteriorly in Group I. Load to failure testing showed no difference between the groups. Conclusion. Surgical reduction of a small PMF with less than 25% ankle joint surface improves pressure distribution but does not affect ankle joint stability. Cite this article: Bone Joint J 2018;100-B:95–100


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 237 - 244
1 Feb 2011
Berber O Amis AA Day AC

The purpose of this study was to assess the stability of a developmental pelvic reconstruction system which extends the concept of triangular osteosynthesis with fixation anterior to the lumbosacral pivot point. An unstable Tile type-C fracture, associated with a sacral transforaminal fracture, was created in synthetic pelves. The new concept was compared with three other constructs, including bilateral iliosacral screws, a tension band plate and a combined plate with screws. The pubic symphysis was plated in all cases. The pelvic ring was loaded to simulate single-stance posture in a cyclical manner until failure, defined as a displacement of 2 mm or 2°. The screws were the weakest construct, failing with a load of 50 N after 400 cycles, with maximal translation in the craniocaudal axis of 12 mm. A tension band plate resisted greater load but failure occurred at 100 N, with maximal rotational displacement around the mediolateral axis of 2.3°. The combination of a plate and screws led to an improvement in stability at the 100 N load level, but rotational failure still occurred around the mediolateral axis. The pelvic reconstruction system was the most stable construct, with a maximal displacement of 2.1° of rotation around the mediolateral axis at a load of 500 N


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 8 | Pages 1155 - 1160
1 Nov 2003
Yang KH Byun YS

Comminuted and displaced fractures of the inferior pole of the patella are not easy to reduce and it is difficult to fix the fragments soundly enough to allow early movement of the knee. We have evaluated the clinical effectiveness of the separate vertical wiring technique in acute comminuted fractures of the inferior pole of the patella. A biomechanical study was also performed using ten pairs of embalmed cadaver knees. A four-part fracture was made on the inferior pole of the patella and fixed by two separate vertical wires on one side and two pull-out sutures after partial patellectomy on the other. The ultimate load to failure in the first group was significantly higher than in the second (250.1± 109.7 N v 69.7 ± 18.9 N, p< 0.002), as was the stiffness (279.9 ± 76.4 N/mm v 23.2 ± 11.4 N/mm, p< 0.001). The separate wire technique was used in 25 patients with comminuted fractures of the inferior pole of the patella who were followed up for a mean period of 22 months (10 to 50). All the fractures healed at a mean of seven weeks (6 to 10). No breakage of a wire or infection occurred. The mean grading at the final follow-up was 29.5 points (27 to 30) using the Böstman method. This technique preserved the length of the patella, fixed the comminuted fragments of the inferior pole and avoided long-term immobilisation of the knee


Bone & Joint Research
Vol. 6, Issue 4 | Pages 216 - 223
1 Apr 2017
Ang BFH Chen JY Yew AKS Chua SK Chou SM Chia SL Koh JSB Howe TS

Objectives

External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF).

Methods

A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness.


The Bone & Joint Journal
Vol. 99-B, Issue 1 | Pages 128 - 133
1 Jan 2017
Socci AR Casemyr NE Leslie MP Baumgaertner MR

Aims

The aim of this paper is to review the evidence relating to the anatomy of the proximal femur, the geometry of the fracture and the characteristics of implants and methods of fixation of intertrochanteric fractures of the hip.

Materials and Methods

Relevant papers were identified from appropriate clinical databases and a narrative review was undertaken.


The Bone & Joint Journal
Vol. 98-B, Issue 9 | Pages 1248 - 1252
1 Sep 2016
White TO Bugler KE Appleton P Will† E McQueen MM Court-Brown CM

Aims

The fundamental concept of open reduction and internal fixation (ORIF) of ankle fractures has not changed appreciably since the 1960s and, whilst widely used, is associated with complications including wound dehiscence and infection, prominent hardware and failure. Closed reduction and intramedullary fixation (CRIF) using a fibular nail, wires or screws is biomechanically stronger, requires minimal incisions, and has low-profile hardware. We hypothesised that fibular nailing in the elderly would have similar functional outcomes to standard fixation, with a reduced rate of wound and hardware problems.

Patients and Methods

A total of 100 patients (25 men, 75 women) over the age of 65 years with unstable ankle fractures were randomised to undergo standard ORIF or fibular nailing (11 men and 39 women in the ORIF group, 14 men and 36 women in the fibular nail group). The mean age was 74 years (65 to 93) and all patients had at least one medical comorbidity. Complications, patient related outcome measures and cost-effectiveness were assessed over 12 months.


The Bone & Joint Journal
Vol. 99-B, Issue 1_Supple_A | Pages 50 - 59
1 Jan 2017
Carli AV Negus JJ Haddad FS

Aims

Periprosthetic femoral fractures (PFF) following total hip arthroplasty (THA) are devastating complications that are associated with functional limitations and increased overall mortality. Although cementless implants have been associated with an increased risk of PFF, the precise contribution of implant geometry and design on the risk of both intra-operative and post-operative PFF remains poorly investigated. A systematic review was performed to aggregate all of the PFF literature with specific attention to the femoral implant used.

Patients and Methods

A systematic search strategy of several journal databases and recent proceedings from the American Academy of Orthopaedic Surgeons was performed. Clinical articles were included for analysis if sufficient implant description was provided. All articles were reviewed by two reviewers. A review of fundamental investigations of implant load-to-failure was performed, with the intent of identifying similar conclusions from the clinical and fundamental literature.


Bone & Joint Research
Vol. 1, Issue 6 | Pages 104 - 110
1 Jun 2012
Swinteck BJ Phan DL Jani J Owen JR Wayne JS Mounasamy V

Objectives

The use of two implants to manage concomitant ipsilateral femoral shaft and proximal femoral fractures has been indicated, but no studies address the relationship of dynamic hip screw (DHS) side plate screws and the intramedullary nail where failure might occur after union. This study compares different implant configurations in order to investigate bridging the gap between the distal DHS and tip of the intramedullary nail.

Methods

A total of 29 left synthetic femora were tested in three groups: 1) gapped short nail (GSN); 2) unicortical short nail (USN), differing from GSN by the use of two unicortical bridging screws; and 3) bicortical long nail (BLN), with two angled bicortical and one unicortical bridging screws. With these findings, five matched-pairs of cadaveric femora were tested in two groups: 1) unicortical long nail (ULN), with a longer nail than USN and three bridging unicortical screws; and 2) BLN. Specimens were axially loaded to 22.7 kg (50 lb), and internally rotated 90°/sec until failure.


Bone & Joint Research
Vol. 1, Issue 11 | Pages 289 - 296
1 Nov 2012
Savaridas T Wallace RJ Muir AY Salter DM Simpson AHRW

Objectives

Small animal models of fracture repair primarily investigate indirect fracture healing via external callus formation. We present the first described rat model of direct fracture healing.

Methods

A rat tibial osteotomy was created and fixed with compression plating similar to that used in patients. The procedure was evaluated in 15 cadaver rats and then in vivo in ten Sprague-Dawley rats. Controls had osteotomies stabilised with a uniaxial external fixator that used the same surgical approach and relied on the same number and diameter of screw holes in bone.


The Bone & Joint Journal
Vol. 96-B, Issue 1 | Pages 114 - 121
1 Jan 2014
Pekmezci M McDonald E Buckley J Kandemir U

We investigated a new intramedullary locking nail that allows the distal interlocking screws to be locked to the nail. We compared fixation using this new implant with fixation using either a conventional nail or a locking plate in a laboratory simulation of an osteoporotic fracture of the distal femur. A total of 15 human cadaver femora were used to simulate an AO 33-A3 fracture pattern. Paired specimens compared fixation using either a locking or non-locking retrograde nail, and using either a locking retrograde nail or a locking plate. The constructs underwent cyclical loading to simulate single-leg stance up to 125 000 cycles. Axial and torsional stiffness and displacement, cycles to failure and modes of failure were recorded for each specimen. When compared with locking plate constructs, locking nail constructs had significantly longer mean fatigue life (75 800 cycles (sd 33 900) vs 12 800 cycles (sd 6100); p = 0.007) and mean axial stiffness (220 N/mm (sd 80) vs 70 N/mm (sd 18); p = 0.005), but lower mean torsional stiffness (2.5 Nm/° (sd 0.9) vs 5.1 Nm/° (sd 1.5); p = 0.008). In addition, in the nail group the mode of failure was either cut-out of the distal screws or breakage of nails, and in the locking plate group breakage of the plate was always the mode of failure. Locking nail constructs had significantly longer mean fatigue life than non-locking nail constructs (78 900 cycles (sd 25 600) vs 52 400 cycles (sd 22 500); p = 0.04).

The new locking retrograde femoral nail showed better stiffness and fatigue life than locking plates, and superior fatigue life to non-locking nails, which may be advantageous in elderly patients.

Cite this article: Bone Joint J 2014;96-B:114–21.


Bone & Joint Research
Vol. 1, Issue 6 | Pages 118 - 124
1 Jun 2012
Grawe B Le T Williamson S Archdeacon A Zardiackas L

Objectives. We aimed to further evaluate the biomechanical characteristics of two locking screws versus three standard bicortical screws in synthetic models of normal and osteoporotic bone. Methods. Synthetic tubular bone models representing normal bone density and osteoporotic bone density were used. Artificial fracture gaps of 1 cm were created in each specimen before fixation with one of two constructs: 1) two locking screws using a five-hole locking compression plate (LCP) plate; or 2) three non-locking screws with a seven-hole LCP plate across each side of the fracture gap. The stiffness, maximum displacement, mode of failure and number of cycles to failure were recorded under progressive cyclic torsional and eccentric axial loading. Results. Locking plates in normal bone survived 10% fewer cycles to failure during cyclic axial loading, but there was no significant difference in maximum displacement or failure load. Locking plates in osteoporotic bone showed less displacement (p = 0.02), but no significant difference in number of cycles to failure or failure load during cyclic axial loading (p = 0.46 and p = 0.25, respectively). Locking plates in normal bone had lower stiffness and torque during torsion testing (both p = 0.03), but there was no significant difference in rotation (angular displacement) (p = 0.84). Locking plates in osteoporotic bone showed lower torque and rotation (p = 0.008), but there was no significant difference in stiffness during torsion testing (p = 0.69). Conclusions. The mechanical performance of locking plate constructs, using only two screws, is comparable to three non-locking screw constructs in osteoporotic bone. Normal bone loaded with either an axial or torsional moment showed slightly better performance with the non-locking construct


Bone & Joint Research
Vol. 1, Issue 4 | Pages 50 - 55
1 Apr 2012
O’Neill F Condon F McGloughlin T Lenehan B Coffey C Walsh M

Introduction

The objective of this study was to determine if a synthetic bone substitute would provide results similar to bone from osteoporotic femoral heads during in vitro testing with orthopaedic implants. If the synthetic material could produce results similar to those of the osteoporotic bone, it could reduce or eliminate the need for testing of implants on bone.

Methods

Pushout studies were performed with the dynamic hip screw (DHS) and the DHS Blade in both cadaveric femoral heads and artificial bone substitutes in the form of polyurethane foam blocks of different density. The pushout studies were performed as a means of comparing the force displacement curves produced by each implant within each material.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 241 - 248
1 Feb 2012
Firoozabadi R McDonald E Nguyen T Buckley JM Kandemir U

Filling the empty holes in peri-articular locking plates may improve the fatigue strength of the fixation. The purpose of this in vitro study was to investigate the effect of plugging the unused holes on the fatigue life of peri-articular distal femoral plates used to fix a comminuted supracondylar fracture model.

A locking/compression plate was applied to 33 synthetic femurs and then a 6 cm metaphyseal defect was created (AO Type 33-A3). The specimens were then divided into three groups: unplugged, plugged with locking screw only and fully plugged holes. They were then tested using a stepwise or run-out fatigue protocol, each applying cyclic physiological multiaxial loads.

All specimens in the stepwise group failed at the 770 N load level. The mean number of cycles to failure for the stepwise specimen was 25 500 cycles (sd 1500), 28 800 cycles (sd 6300), and 26 400 cycles (sd 2300) cycles for the unplugged, screw only and fully plugged configurations, respectively (p = 0.16). The mean number of cycles to failure for the run-out specimens was 42 800 cycles (sd 10 700), 36 000 cycles (sd 7200), and 36 600 cycles (sd 10 000) for the unplugged, screw only and fully plugged configurations, respectively (p = 0.50). There were also no differences in axial or torsional stiffness between the constructs. The failures were through the screw holes at the level of comminution.

In conclusion, filling the empty combination locking/compression holes in peri-articular distal femur locking plates at the level of supracondylar comminution does not increase the fatigue life of the fixation in a comminuted supracondylar femoral fracture model (AO 33-A3) with a 6 cm gap.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 245 - 250
1 Feb 2011
Wilson J Bajwa A Kamath V Rangan A

Compression and absolute stability are important in the management of intra-articular fractures. We compared tension band wiring with plate fixation for the treatment of fractures of the olecranon by measuring compression within the fracture. Identical transverse fractures were created in models of the ulna. Tension band wires were applied to ten fractures and ten were fixed with Acumed plates. Compression was measured using a Tekscan force transducer within the fracture gap. Dynamic testing was carried out by reproducing cyclical contraction of the triceps of 20 N and of the brachialis of 10 N. Both methods were tested on each sample. Paired t-tests compared overall compression and compression at the articular side of the fracture.

The mean compression for plating was 819 N (sd 602, 95% confidence interval (CI)) and for tension band wiring was 77 N (sd 19, 95% CI) (p = 0.039). The mean compression on the articular side of the fracture for plating was 343 N (sd 276, 95% CI) and for tension band wiring was 1 N (sd 2, 95% CI) (p = 0.038).

During simulated movements, the mean compression was reduced in both groups, with tension band wiring at −14 N (sd 7) and for plating −173 N (sd 32). No increase in compression on the articular side was detected in the tension band wiring group.

Pre-contoured plates provide significantly greater compression than tension bands in the treatment of transverse fractures of the olecranon, both over the whole fracture and specifically at the articular side of the fracture. In tension band wiring the overall compression was reduced and articular compression remained negligible during simulated contraction of the triceps, challenging the tension band principle.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 103 - 109
1 Jan 2010
Laffosse J Espié A Bonnevialle N Mansat P Tricoire J Bonnevialle P Chiron P Puget J

We retrospectively analysed the clinical results of 30 patients with injuries of the sternoclavicular joint at a minimum of 12 months’ follow-up. A closed reduction was attempted in 14 cases. It was successful in only five of ten dislocations, and failed in all four epiphyseal disruptions. A total of 25 patients underwent surgical reduction, in 18 cases in conjunction with a stabilisation procedure.

At a mean follow-up of 60 months, four patients were lost to follow-up. The functional results in the remainder were satisfactory, and 18 patients were able to resume their usual sports activity at the same level. There was no statistically significant difference between epiphyseal disruption and sternoclavicular dislocation (p > 0.05), but the functional scores (Simple Shoulder Test, Disability of Arm, Shoulder, Hand, and Constant scores) were better when an associated stabilisation procedure had been performed rather than reduction alone (p = 0.05, p = 0.04 and p = 0.07, respectively).

We recommend meticulous pre-operative clinical assessment with CT scans. In sternoclavicular dislocation managed within the first 48 hours and with no sign of mediastinal complication, a closed reduction can be attempted, although this was unsuccessful in half of our cases. A control CT scan is mandatory. In all other cases, and particularly if epiphyseal disruption is suspected, we recommend open reduction with a stabilisation procedure by costaclavicular cerclage or tenodesis. The use of a Kirschner wire should be avoided.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 503 - 509
1 Apr 2007
Giannoudis PV Tzioupis C Moed BR

Our aim was to evaluate the efficacy of a two-level reconstruction technique using subchondral miniscrews for the stabilisation of comminuted posterior-wall marginal acetabular fragments before applying lag screws and a buttress plate to the main overlying posterior fragment. Between 1995 and 2003, 29 consecutive patients with acute comminuted displaced posterior-wall fractures of the acetabulum were treated operatively using this technique.

The quality of reduction measured from three standard plain radiographs was graded as anatomical in all 29 hips. The clinical outcome at a mean follow-up of 35 months (24 to 90) was considered to be excellent in five patients (17%), very good in 16 (55%), good in six (21%) and poor in two (7%). The use of the two-level reconstruction technique appears to provide stable fixation and is associated with favourable results in terms of the incidence of post-traumatic osteoarthritis and the clinical outcome. However, poor results may occur in patients over the age of 55 years.