Advertisement for orthosearch.org.uk
Results 1 - 20 of 774
Results per page:
Bone & Joint Open
Vol. 1, Issue 5 | Pages 152 - 159
22 May 2020
Oommen AT Chandy VJ Jeyaraj C Kandagaddala M Hariharan TD Arun Shankar A Poonnoose PM Korula RJ

Aims. Complex total hip arthroplasty (THA) with subtrochanteric shortening osteotomy is necessary in conditions other than developmental dysplasia of the hip (DDH) and septic arthritis sequelae with significant proximal femur migration. Our aim was to evaluate the hip centre restoration with THAs in these hips. Methods. In all, 27 THAs in 25 patients requiring THA with femoral shortening between 2012 and 2019 were assessed. Bilateral shortening was required in two patients. Subtrochanteric shortening was required in 14 out of 27 hips (51.9%) with aetiology other than DDH or septic arthritis. Vertical centre of rotation (VCOR), horizontal centre of rotation, offset, and functional outcome was calculated. The mean followup was 24.4 months (5 to 92 months). Results. The mean VCOR was 17.43 mm (9.5 to 27 mm) and horizontal centre of rotation (HCOR) was 24.79 mm (17.2 to 37.6 mm). Dislocation at three months following acetabulum reconstruction required femoral shortening for offset correction and hip centre restoration in one hip. Mean horizontal offset was 39.72 (32.7 to 48.2 mm) compared to 42.89 (26.7 to 50.6 mm) on the normal side. Mean Harris Hip Score (HHS) of 22.64 (14 to 35) improved to 79.43 (68 to 92). Mean pre-operative shortening was 3.95 cm (2 to 8 cm). Residual limb length discrepancy was 1.5 cm (0 to 2 cm). Sciatic neuropraxia in two patients recovered by six months, and femoral neuropraxia in one hip recovered by 12 months. Mean Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was 13.92 (9 to 19). Mean 12-item short form survey (SF-12) physical scores of 50.6 and mental of 60.12 were obtained. Conclusion. THA with subtrochanteric shortening is valuable in complex hips with high dislocation. The restoration of the hip centre of rotation and offset is important in these hips. Level of evidence IV. Femoral shortening useful in conditions other than DDH and septic sequelae. Restoration of hip centre combined with offset to be planned and ensured


The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1535 - 1539
1 Nov 2014
Tonne BM Kempton LB Lack WD Karunakar MA

The purpose of this study was to describe the radiological characteristics of a previously unreported finding: posterior iliac offset at the sacroiliac joint and to assess its association with pelvic instability as measured by initial displacement and early implant loosening or failure. Radiographs from 42 consecutive patients with a mean age of 42 years (18 to 77; 38 men, four women) and mean follow-up of 38 months (3 to 96) with Anteroposterior Compression II injuries, were retrospectively reviewed. Standardised measurements were recorded for the extent of any diastasis of the pubic symphysis, widening of the sacroiliac joint, static vertical ramus offset and a novel measurement (posterior offset of the ilium at the sacroiliac joint identified on axial CT scan). Pelvic fractures with posterior iliac offset exhibited greater levels of initial displacement of the anterior pelvis (anterior sacroiliac widening, pubic symphysis diastasis and static vertical ramus offset, p < 0.001,0.034 and 0.028, respectively). Pelvic fractures with posterior ilium offset also demonstrated higher rates of implant loosening regardless of fixation method (p = 0.05). Posterior offset of the ilium was found to be a reliable and reproducible measurement with substantial inter-observer agreement (kappa = 0.70). Posterior offset of the ilium on axial CT scan is associated with greater levels of initial pelvic displacement and early implant loosening. Cite this article: Bone Joint J 2014;96-B:1535–9


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 9 - 15
1 Jan 2007
Beaulé PE Harvey N Zaragoza E Le Duff MJ Dorey FJ

Because the femoral head/neck junction is preserved in hip resurfacing, patients may be at greater risk of impingement, leading to abnormal wear patterns and pain. We assessed femoral head/neck offset in 63 hips undergoing metal-on-metal hip resurfacing and in 56 hips presenting with non-arthritic pain secondary to femoroacetabular impingement. Most hips undergoing resurfacing (57%; 36) had an offset ratio ≤ 0.15 pre-operatively and required greater correction of offset at operation than the rest of the group. In the non-arthritic hips the mean offset ratio was 0.137 (0.04 to 0.23), with the offset ratio correlating negatively to an increasing α angle. An offset ratio ≤ 0.15 had a 9.5-fold increased relative risk of having an α angle ≥ 50.5°. Most hips undergoing resurfacing have an abnormal femoral head/neck offset, which is best assessed in the sagittal plane


Bone & Joint Open
Vol. 3, Issue 10 | Pages 795 - 803
12 Oct 2022
Liechti EF Attinger MC Hecker A Kuonen K Michel A Klenke FM

Aims. Traditionally, total hip arthroplasty (THA) templating has been performed on anteroposterior (AP) pelvis radiographs. Recently, additional AP hip radiographs have been recommended for accurate measurement of the femoral offset (FO). To verify this claim, this study aimed to establish quantitative data of the measurement error of the FO in relation to leg position and X-ray source position using a newly developed geometric model and clinical data. Methods. We analyzed the FOs measured on AP hip and pelvis radiographs in a prospective consecutive series of 55 patients undergoing unilateral primary THA for hip osteoarthritis. To determine sample size, a power analysis was performed. Patients’ position and X-ray beam setting followed a standardized protocol to achieve reproducible projections. All images were calibrated with the KingMark calibration system. In addition, a geometric model was created to evaluate both the effects of leg position (rotation and abduction/adduction) and the effects of X-ray source position on FO measurement. Results. The mean FOs measured on AP hip and pelvis radiographs were 38.0 mm (SD 6.4) and 36.6 mm (SD 6.3) (p < 0.001), respectively. Radiological view had a smaller effect on FO measurement than inaccurate leg positioning. The model showed a non-linear relationship between projected FO and femoral neck orientation; at 30° external neck rotation (with reference to the detector plane), a true FO of 40 mm was underestimated by up to 20% (7.8 mm). With a neutral to mild external neck rotation (≤ 15°), the underestimation was less than 7% (2.7 mm). The effect of abduction and adduction was negligible. Conclusion. For routine THA templating, an AP pelvis radiograph remains the gold standard. Only patients with femoral neck malrotation > 15° on the AP pelvis view, e.g. due to external rotation contracture, should receive further imaging. Options include an additional AP hip view with elevation of the entire affected hip to align the femoral neck more parallel to the detector, or a CT scan in more severe cases. Cite this article: Bone Jt Open 2022;3(10):795–803


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 163 - 166
1 Feb 2005
Loughead JM Chesney D Holland JP McCaskie AW

Hip resurfacing is being performed more frequently in the United Kingdom. The possible benefits include more accurate restoration of leg length, femoral offset and femoral anteversion than occurs after total hip arthroplasty (THA). We compared anteroposterior radiographs from 26 patients who had undergone hybrid THA (uncemented cup/cemented stem), with 28 who had undergone Birmingham Hip Resurfacing arthroplasty (BHR). We measured the femoral offset, femoral length, acetabular offset and acetabular height with reference to the normal contralateral hip. The data were analysed by paired t-tests. There was a significant reduction in femoral offset (p = 0.0004) and increase in length (p = 0.001) in the BHR group. In the THA group, there was a significant reduction in acetabular offset (p = 0.0003), but femoral offset and overall hip length were restored accurately. We conclude that hip resurfacing does not restore hip mechanics as accurately as THA


The Bone & Joint Journal
Vol. 96-B, Issue 1 | Pages 36 - 42
1 Jan 2014
Liebs T Nasser L Herzberg W Rüther W Hassenpflug J

Several factors have been implicated in unsatisfactory results after total hip replacement (THR). We examined whether femoral offset, as measured on digitised post-operative radiographs, was associated with pain after THR. The routine post-operative radiographs of 362 patients (230 women and 132 men, mean age 70.0 years (35.2 to 90.5)) who received primary unilateral THRs of varying designs were measured after calibration. The femoral offset was calculated using the known dimensions of the implants to control for femoral rotation. Femoral offset was categorised into three groups: normal offset (within 5 mm of the height-adjusted femoral offset), low offset and high offset. We determined the associations to the absolute final score and the improvement in the mean Western Ontario and McMaster Universities osteoarthritis index (WOMAC) pain subscale scores at three, six, 12 and 24 months, adjusting for confounding variables. The amount of femoral offset was associated with the mean WOMAC pain subscale score at all points of follow-up, with the low-offset group reporting less WOMAC pain than the normal or high-offset groups (six months: 7.01 (. sd. 11.69) vs 12.26 (. sd. 15.10) vs 13.10 (. sd. 16.20), p = 0.006; 12 months: 6.55 (. sd. 11.09) vs 9.73 (. sd. 13.76) vs 13.46 (. sd. 18.39), p = 0.010; 24 months: 5.84 (. sd. 10.23) vs 9.60 (. sd. 14.43) vs 13.12 (. sd. 17.43), p = 0.004). When adjusting for confounding variables, including age and gender, the greatest improvement was seen in the low-offset group, with the normal-offset group demonstrating more improvement than the high-offset group. . Cite this article: Bone Joint J 2014;96-B:36–42


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 67 - 69
1 Nov 2013
Brooks PJ

Dislocation is one of the most common causes of patient and surgeon dissatisfaction following hip replacement and to treat it, the causes must first be understood. Patient factors include age greater than 70 years, medical comorbidities, female gender, ligamentous laxity, revision surgery, issues with the abductors, and patient education. Surgeon factors include the annual quantity of procedures and experience, the surgical approach, adequate restoration of femoral offset and leg length, component position, and soft-tissue or bony impingement. Implant factors include the design of the head and neck region, and so-called skirts on longer neck lengths. There should be offset choices available in order to restore soft-tissue tension. Lipped liners aid in gaining stability, yet if improperly placed may result in impingement and dislocation. Late dislocation may result from polyethylene wear, soft-tissue destruction, trochanteric or abductor disruption and weakness, or infection. Understanding the causes of hip dislocation facilitates prevention in a majority of instances. Proper pre-operative planning includes the identification of patients with a high offset in whom inadequate restoration of offset will reduce soft-tissue tension and abductor efficiency. Component position must be accurate to achieve stability without impingement. Finally, patient education cannot be over-emphasised, as most dislocations occur early, and are preventable with proper instructions. Cite this article: Bone Joint J 2013;95-B, Supple A:67–9


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 757 - 761
1 Jun 2009
Nuttall D Haines JF Trail IA

In a prospective study between 2000 and 2005, 22 patients with primary osteoarthritis of the shoulder had a total shoulder arthroplasty with a standard five-pegged glenoid component, 12 with non-offset humeral head and ten with offset humeral head components. Over a period of 24 months the relative movement of the glenoid component with respect to the scapula was measured using radiostereometric analysis. Nine glenoids needed reaming for erosion. There was a significant increase in rotation about all three axes with time (p < 0.001), the largest occurring about the longitudinal axis (anteversion-retroversion), with mean values of 3.8° and 1.9° for the non-offset and offset humeral head eroded subgroups, respectively. There was also a significant difference in rotation about the anteversion-retroversion axis (p = 0.01) and the varus-valgus (p < 0.001) z-axis between the two groups. The offset humeral head group reached a plateau at early follow-up with rotation about the z-axis, whereas the mean of the non-offset humeral head group at 24 months was three times greater than that of the offset group accounting for the highly significant difference between them


Bone & Joint Research
Vol. 6, Issue 3 | Pages 172 - 178
1 Mar 2017
Clement ND MacDonald DJ Hamilton DF Burnett R

Objectives. Preservation of posterior condylar offset (PCO) has been shown to correlate with improved functional results after primary total knee arthroplasty (TKA). Whether this is also the case for revision TKA, remains unknown. The aim of this study was to assess the independent effect of PCO on early functional outcome after revision TKA. Methods. A total of 107 consecutive aseptic revision TKAs were performed by a single surgeon during an eight-year period. The mean age was 69.4 years (39 to 85) and there were 59 female patients and 48 male patients. The Oxford Knee Score (OKS) and Short-form (SF)-12 score were assessed pre-operatively and one year post-operatively. Patient satisfaction was also assessed at one year. Joint line and PCO were assessed radiographically at one year. Results. There was a significant improvement in the OKS (10.6 points, 95% confidence interval (CI) 8.8 to 12.3) and the SF-12 physical component score (5.9, 95% CI 4.1 to 7.8). PCO directly correlated with change in OKS (p < 0.001). Linear regression analysis confirmed the independent effect of PCO on the OKS (p < 0.001) and the SF-12 physical score (p = 0.02). The overall rate of satisfaction was 85% and on logistic regression analysis improvement in the OKS (p = 0.002) was a significant predictor of patient satisfaction, which is related to PCO; although this was not independently associated with satisfaction. Conclusion. Preservation of PCO should be a major consideration when undertaking revision TKA. The option of increasing PCO to balance the flexion gap while maintaining the joint line should be assessed intra-operatively. Cite this article: N. D. Clement, D. J. MacDonald, D. F. Hamilton, R. Burnett. Posterior condylar offset is an independent predictor of functional outcome after revision total knee arthroplasty. Bone Joint Res 2017;6:172–178. DOI: 10.1302/2046-3758.63.BJR-2015-0021.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 477 - 482
1 Apr 2012
Merle C Waldstein W Pegg E Streit MR Gotterbarm T Aldinger PR Murray DW Gill HS

The aim of this retrospective cohort study was to identify any difference in femoral offset as measured on pre-operative anteroposterior (AP) radiographs of the pelvis, AP radiographs of the hip and corresponding CT scans in a consecutive series of 100 patients with primary end-stage osteoarthritis of the hip (43 men and 57 women with a mean age of 61 years (45 to 74) and a mean body mass index of 28 kg/m. 2. (20 to 45)). Patients were positioned according to a standardised protocol to achieve reproducible projection and all images were calibrated. Inter- and intra-observer reliability was evaluated and agreement between methods was assessed using Bland-Altman plots. In the entire cohort, the mean femoral offset was 39.0 mm (95% confidence interval (CI) 37.4 to 40.6) on radiographs of the pelvis, 44.0 mm (95% CI 42.4 to 45.6) on radiographs of the hip and 44.7 mm (95% CI 43.5 to 45.9) on CT scans. AP radiographs of the pelvis underestimated femoral offset by 13% when compared with CT (p < 0.001). No difference in mean femoral offset was seen between AP radiographs of the hip and CT (p = 0.191). Our results suggest that femoral offset is significantly underestimated on AP radiographs of the pelvis but can be reliably and accurately assessed on AP radiographs of the hip in patients with primary end-stage hip osteoarthritis. We, therefore, recommend that additional AP radiographs of the hip are obtained routinely for the pre-operative assessment of femoral offset when templating before total hip replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 915 - 918
1 Jul 2007
Hanratty BM Thompson NW Wilson RK Beverland DE

We have studied the concept of posterior condylar offset and the importance of its restoration on the maximum range of knee flexion after posterior-cruciate-ligament-retaining total knee replacement (TKR). We measured the difference in the posterior condylar offset before and one year after operation in 69 patients who had undergone a primary cruciate-sacrificing mobile bearing TKR by one surgeon using the same implant and a standardised operating technique. In all the patients true pre- and post-operative lateral radiographs had been taken. The mean pre- and post-operative posterior condylar offset was 25.9 mm (21 to 35) and 26.9 mm (21 to 34), respectively. The mean difference in posterior condylar offset was + 1 mm (−6 to +5). The mean pre-operative knee flexion was 111° (62° to 146°) and at one year postoperatively, it was 107° (51° to 137°). There was no statistical correlation between the change in knee flexion and the difference in the posterior condylar offset after TKR (Pearson correlation coefficient r = −0.06, p = 0.69)


Objectives. Posterior condylar offset (PCO) and posterior tibial slope (PTS) are critical factors in total knee arthroplasty (TKA). A computational simulation was performed to evaluate the biomechanical effect of PCO and PTS on cruciate retaining TKA. Methods. We generated a subject-specific computational model followed by the development of ± 1 mm, ± 2 mm and ± 3 mm PCO models in the posterior direction, and -3°, 0°, 3° and 6° PTS models with each of the PCO models. Using a validated finite element (FE) model, we investigated the influence of the changes in PCO and PTS on the contact stress in the patellar button and the forces on the posterior cruciate ligament (PCL), patellar tendon and quadriceps muscles under the deep knee-bend loading conditions. Results. Contact stress on the patellar button increased and decreased as PCO translated to the anterior and posterior directions, respectively. In addition, contact stress on the patellar button decreased as PTS increased. These trends were consistent in the FE models with altered PCO. Higher quadriceps muscle and patellar tendon force are required as PCO translated in the anterior direction with an equivalent flexion angle. However, as PTS increased, quadriceps muscle and patellar tendon force reduced in each PCO condition. The forces exerted on the PCL increased as PCO translated to the posterior direction and decreased as PTS increased. Conclusion. The change in PCO alternatively provided positive and negative biomechanical effects, but it led to a reduction in a negative biomechanical effect as PTS increased. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, J-S. Lee, S. K. Kwon. A computational simulation study to determine the biomechanical influence of posterior condylar offset and tibial slope in cruciate retaining total knee arthroplasty. Bone Joint Res 2018;7:69–78. DOI: 10.1302/2046-3758.71.BJR-2017-0143.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 77-B, Issue 6 | Pages 865 - 869
1 Nov 1995
McGrory B Morrey B Cahalan T An K Cabanela M

At a minimum of one year after operation, we studied 64 patients with 86 total hip arthroplasties (THA) by standard anteroposterior hip and pelvic radiographs and measurement of range of motion and of isometric abduction strength. The femoral offset correlated positively with the range of abduction (p = 0.046). Abduction strength correlated positively with both femoral offset (p = 0.0001) and the length of the abductor lever arm (p = 0.005). Using multiple regression, abduction strength correlated with height (p = 0.017), gender (p = 0.0005), range of flexion (p = 0.047) and the abductor lever arm (p = 0.060). Our findings suggest that greater femoral offset after THA allows both an increased range of abduction and greater abductor strength


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 1 | Pages 82 - 84
1 Jan 1996
Izquierdo-Avino RJ Siney PD Wroblewski BM

We studied wear in the ultra-high-molecular-weight polyethylene offset bore socket in 54 hips which had had Charnley low-friction arthroplasty. At an average follow-up of 8.1 years, the mean penetration rate was 0.04 mm per year. Correlation between the depth of socket penetration and the incidence of socket migration was confirmed, but socket migration occurred with lower penetration than had been previously reported


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1615 - 1622
1 Dec 2015
Müller M Abdel MP Wassilew GI Duda G Perka C

The accurate reconstruction of hip anatomy and biomechanics is thought to be important in achieveing good clinical outcomes following total hip arthroplasty (THA). To this end some newer hip designs have introduced further modularity into the design of the femoral component such that neck­shaft angle and anteversion, which can be adjusted intra-operatively. The clinical effect of this increased modularity is unknown. We have investigated the changes in these anatomical parameters following conventional THA with a prosthesis of predetermined neck–shaft angle and assessed the effect of changes in the hip anatomy on clinical outcomes.

In total, 44 patients (mean age 65.3 years (standard deviation (sd) 7); 17 male/27 female; mean body mass index 26.9 (kg/m²) (sd 3.1)) underwent a pre- and post-operative three-dimensional CT scanning of the hip. The pre- and post-operative neck–shaft angle, offset, hip centre of rotation, femoral anteversion, and stem alignment were measured. Additionally, a functional assessment and pain score were evaluated before surgery and at one year post-operatively and related to the post-operative anatomical changes.

The mean pre-operative neck–shaft angle was significantly increased by 2.8° from 128° (sd 6.2; 119° to 147°) to 131° (sd 2.1; 127° to 136°) (p = 0.009). The mean pre-operative anteversion was 24.9° (sd 8; 7.9 to 39.1) and reduced to 7.4° (sd 7.3; -11.6° to 25.9°) post-operatively (p < 0.001). The post-operative changes had no influence on function and pain. Using a standard uncemented femoral component, high pre- and post-operative variability of femoral anteversion and neck–shaft angles was found with a significant decrease of the post-operative anteversion and slight increase of the neck–shaft angles, but without any impact on clinical outcome.

Cite this article: Bone Joint J 2015;97-B:1615–22.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 6 | Pages 997 - 997
1 Nov 1996
SPALDING TJW


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 801 - 810
1 Jul 2022
Krull P Steinbrück A Grimberg AW Melsheimer O Morlock M Perka C

Aims. Registry studies on modified acetabular polyethylene (PE) liner designs are limited. We investigated the influence of standard and modified PE acetabular liner designs on the revision rate for mechanical complications in primary cementless total hip arthroplasty (THA). Methods. We analyzed 151,096 primary cementless THAs from the German Arthroplasty Registry (EPRD) between November 2012 and November 2020. Cumulative incidence of revision for mechanical complications for standard and four modified PE liners (lipped, offset, angulated/offset, and angulated) was determined using competing risk analysis at one and seven years. Confounders were investigated with a Cox proportional-hazards model. Results. Median follow-up was 868 days (interquartile range 418 to 1,364). The offset liner design reduced the risk of revision (hazard ratio (HR) 0.68 (95% confidence interval (CI) 0.50 to 0.92)), while the angulated/offset liner increased the risk of revision for mechanical failure (HR 1.81 (95% CI 1.38 to 2.36)). The cumulative incidence of revision was lowest for the offset liner at one and seven years (1.0% (95% CI 0.7 to 1.3) and 1.8% (95% CI 1.0 to 3.0)). No difference was found between standard, lipped, and angulated liner designs. Higher age at index primary THA and an Elixhauser Comorbidity Index greater than 0 increased the revision risk in the first year after surgery. Implantation of a higher proportion of a single design of liner in a hospital reduced revision risk slightly but significantly (p = 0.001). Conclusion. The use of standard acetabular component liners remains a good choice in primary uncemented THA, as most modified liner designs were not associated with a reduced risk of revision for mechanical failure. Offset liner designs were found to be beneficial and angulated/offset liner designs were associated with higher risks of revision. Cite this article: Bone Joint J 2022;104-B(7):801–810


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims. Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. Methods. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery. Results. There were no significant differences for any of the baseline characteristics including spinopelvic mobility. The absolute error for achieving the planned horizontal COR was median 1.4 mm (interquartile range (IQR) 0.87 to 3.42) in RO THA versus 4.3 mm (IQR 3 to 6.8; p < 0.001); vertical COR mean 0.91 mm (SD 0.73) in RO THA versus 2.3 mm (SD 1.3; p < 0.001); and combined offset median 2 mm (IQR 0.97 to 5.45) in RO THA versus 3.9 mm (IQR 2 to 7.9; p = 0.019). Improved accuracy was observed with RO THA in achieving the desired acetabular component positioning (root mean square error for anteversion and inclination was 2.6 and 1.3 vs 8.9 and 5.3, repectively) and leg length (mean 0.6 mm vs 1.4 mm; p < 0.001). Patient-reported outcome measures were comparable between the two groups at baseline and one year. Participants in the RO THA group needed fewer physiotherapy sessions postoperatively (median six (IQR 4.5 to 8) vs eight (IQR 6 to 11; p = 0.005). Conclusion. This RCT suggested that robotic-arm assistance in THA was associated with improved accuracy in restoring the native COR, better preservation of the combined offset, leg length correction, and superior accuracy in achieving the desired acetabular component positioning. Further evaluation through long-term and registry data is necessary to assess whether these findings translate into improved implant survival and functional outcomes. Cite this article: Bone Joint J 2024;106-B(4):324–335


Bone & Joint Open
Vol. 2, Issue 7 | Pages 476 - 485
8 Jul 2021
Scheerlinck T De Winter E Sas A Kolk S Van Gompel G Vandemeulebroucke J

Aims. Hip arthroplasty does not always restore normal anatomy. This is due to inaccurate surgery or lack of stem sizes. We evaluated the aptitude of four total hip arthroplasty systems to restore an anatomical and medialized hip rotation centre. Methods. Using 3D templating software in 49 CT scans of non-deformed femora, we virtually implanted: 1) small uncemented calcar-guided stems with two offset options (Optimys, Mathys), 2) uncemented straight stems with two offset options (Summit, DePuy Synthes), 3) cemented undersized stems (Exeter philosophy) with three offset options (CPT, ZimmerBiomet), and 4) cemented line-to-line stems (Kerboul philosophy) with proportional offsets (Centris, Mathys). We measured the distance between the templated and the anatomical and 5 mm medialized hip rotation centre. Results. Both rotation centres could be restored within 5 mm in 94% and 92% of cases, respectively. The cemented undersized stem performed best, combining freedom of stem positioning and a large offset range. The uncemented straight stem performed well because of its large and well-chosen offset range, and despite the need for cortical bone contact limiting stem positioning. The cemented line-to-line stem performed less well due to a small range of sizes and offsets. The uncemented calcar-guided stem performed worst, despite 24 sizes and a large and well-chosen offset range. This was attributed to the calcar curvature restricting the stem insertion depth along the femoral axis. Conclusion. In the majority of non-deformed femora, leg length, offset, and anteversion can be restored accurately with non-modular stems during 3D templating. Failure to restore hip biomechanics is mostly due to surgical inaccuracy. Small calcar guided stems offer no advantage to restore hip biomechanics compared to more traditional designs. Cite this article: Bone Jt Open 2021;2(7):476–485


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1669 - 1677
1 Nov 2021
Divecha HM O'Neill TW Lunt M Board TN

Aims. To determine if primary cemented acetabular component geometry (long posterior wall (LPW), hooded, or offset reorientating) influences the risk of revision total hip arthroplasty (THA) for instability or loosening. Methods. The National Joint Registry (NJR) dataset was analyzed for primary THAs performed between 2003 and 2017. A cohort of 224,874 cemented acetabular components were included. The effect of acetabular component geometry on the risk of revision for instability or for loosening was investigated using log-binomial regression adjusting for age, sex, American Society of Anesthesiologists grade, indication, side, institution type, operating surgeon grade, surgical approach, polyethylene crosslinking, and prosthetic head size. A competing risk survival analysis was performed with the competing risks being revision for other indications or death. Results. The distribution of acetabular component geometries was: LPW 81.2%; hooded 18.7%; and offset reorientating 0.1%. There were 3,313 (1.5%) revision THAs performed, of which 815 (0.4%) were for instability and 838 (0.4%) were for loosening. Compared to the LPW group, the adjusted subhazard ratio of revision for instability in the hooded group was 2.31 (p < 0.001) and 4.12 (p = 0.047) in the offset reorientating group. Likewise, the subhazard ratio of revision for loosening was 2.65 (p < 0.001) in the hooded group and 13.61 (p < 0.001) in the offset reorientating group. A time-varying subhazard ratio of revision for instability (hooded vs LPW) was found, being greatest within the first three months. Conclusion. This registry-based study confirms a significantly higher risk of revision after cemented THA for instability and for loosening when a hooded or offset reorientating acetabular component is used, compared to a LPW component. Further research is required to clarify if certain patients benefit from the use of hooded or offset reorientating components, but we recommend caution when using such components in routine clinical practice. Cite this article: Bone Joint J 2021;103-B(11):1669–1677