Advertisement for orthosearch.org.uk
Results 1 - 20 of 124
Results per page:
Bone & Joint Open
Vol. 2, Issue 12 | Pages 1057 - 1061
1 Dec 2021
Ahmad SS Weinrich L Giebel GM Beyer MR Stöckle U Konrads C

Aims. The aim of this study was to determine the association between knee alignment and the vertical orientation of the femoral neck in relation to the floor. This could be clinically important because changes of femoral neck orientation might alter chondral joint contact zones and joint reaction forces, potentially inducing problems like pain in pre-existing chondral degeneration. Further, the femoral neck orientation influences the ischiofemoral space and a small ischiofemoral distance can lead to impingement. We hypothesized that a valgus knee alignment is associated with a more vertical orientation of the femoral neck in standing position, compared to a varus knee. We further hypothesized that realignment surgery around the knee alters the vertical orientation of the femoral neck. Methods. Long-leg standing radiographs of patients undergoing realignment surgery around the knee were used. The hip-knee-ankle angle (HKA) and the vertical orientation of the femoral neck in relation to the floor were measured, prior to surgery and after osteotomy-site-union. Linear regression was performed to determine the influence of knee alignment on the vertical orientation of the femoral neck. Results. The cohort included 147 patients who underwent knee realignment-surgery. The mean age was 51.5 years (SD 11). Overall, 106 patients underwent a valgisation-osteotomy, while 41 underwent varisation osteotomy. There was a significant association between the orientation of the knee and the coronal neck-orientation. In the varus group, the median orientation of the femoral neck was 46.5° (interquartile range (IQR) 49.7° to 50.0°), while in the valgus group, the orientation was 52.0° (IQR 46.5° to 56.7°; p < 0.001). Linear regression analysis revealed that HKA demonstrated a direct influence on the coronal neck-orientation (β = 0.5 (95% confidence interval (CI) 0.2 to 0.7); p = 0.002). Linear regression also showed that realignment surgery was associated with a significant influence on the change in the coronal femoral neck orientation (β = 5.6 (95% CI 1.5 to 9.8); p = 0.008). Conclusion. Varus or valgus knee alignment is associated with either a more horizontal or a more vertical femoral neck orientation in standing position, respectively. Subsequently, osteotomies around the knee alter the vertical orientation of the femoral neck. These aspects are of importance when planning osteotomies around the knee in order to appreciate the effects on the adjacent hip joint. The concept may be of even more relevance in dysplastic hips. Cite this article: Bone Jt Open 2021;2(12):1057–1061


The Bone & Joint Journal
Vol. 98-B, Issue 3 | Pages 326 - 333
1 Mar 2016
Morvan A Moreau S Combourieu B Pansard E Marmorat JL Carlier R Judet T Lonjon G

Aims. The primary aim of this study was to analyse the position of the acetabular and femoral components in total hip arthroplasty undertaken using an anterior surgical approach. . Patients and Methods. In a prospective, single centre study, we used the EOS imaging system to analyse the position of components following THA performed via the anterior approach in 102 patients (103 hips) with a mean age of 64.7 years (. sd. 12.6). Images were taken with patients in the standing position, allowing measurement of both anatomical and functional anteversion of the acetabular component. . Results. The mean inclination of the acetabular component was 39° (standard deviation (. sd). 6), the mean anatomical anteversion was 30° (. sd. 10), and the mean functional anteversion was 31° (. sd. 8) five days after surgery. The mean anteversion of the femoral component was 20° (. sd.  11). Anatomical and functional anteversion of the acetabular component differed by >  10° in 23 (22%) cases. Pelvic tilt was the only pre-operative predictive factor of this difference. Conclusion. Our study showed that anteversion of the acetabular component following THA using the anterior approach was greater than the recommended target value, and that substantial differences were observed in some patients when measured using two different measurement planes. If these results are confirmed by further studies, and considering that the anterior approach is intended to limit the incidence of dislocation, a new correlation study for each reference plane (anatomical and functional) will be necessary to define a ‘safe zone’ for use with the anterior approach. Take home message: EOS imaging system is helpful in the pre-operative and post-operative radiological analysis of total hip arthroplasty. Cite this article: Bone Joint J 2016;98-B:326–333



The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 128 - 135
1 Feb 2024
Jenkinson MRJ Cheung TCC Witt J Hutt JRB

Aims. The aim of this study is to evaluate whether acetabular retroversion (AR) represents a structural anatomical abnormality of the pelvis or is a functional phenomenon of pelvic positioning in the sagittal plane, and to what extent the changes that result from patient-specific functional position affect the extent of AR. Methods. A comparative radiological study of 19 patients (38 hips) with AR were compared with a control group of 30 asymptomatic patients (60 hips). CT scans were corrected for rotation in the axial and coronal planes, and the sagittal plane was then aligned to the anterior pelvic plane. External rotation of the hemipelvis was assessed using the superior iliac wing and inferior iliac wing angles as well as quadrilateral plate angles, and correlated with cranial and central acetabular version. Sagittal anatomical parameters were also measured and correlated to version measurements. In 12 AR patients (24 hips), the axial measurements were repeated after matching sagittal pelvic rotation with standing and supine anteroposterior radiographs. Results. Acetabular version was significantly lower and measurements of external rotation of the hemipelvis were significantly increased in the AR group compared to the control group. The AR group also had increased evidence of anterior projection of the iliac wing in the sagittal plane. The acetabular orientation angles were more retroverted in the supine compared to standing position, and the change in acetabular version correlated with the change in sagittal pelvic tilt. An anterior pelvic tilt of 1° correlated with 1.02° of increased cranial retroversion and 0.76° of increased central retroversion. Conclusion. This study has demonstrated that patients with symptomatic AR have both an externally rotated hemipelvis and increased anterior projection of the iliac wing compared to a control group of asymptomatic patients. Functional sagittal pelvic positioning was also found to affect AR in symptomatic patients: the acetabulum was more retroverted in the supine position compared to standing position. Changes in acetabular version correlate with the change in sagittal pelvic tilt. These findings should be taken into account by surgeons when planning acetabular correction for AR with periacetabular osteotomy. Cite this article: Bone Joint J 2024;106-B(2):128–135


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 74 - 80
1 Mar 2024
Heckmann ND Plaskos C Wakelin EA Pierrepont JW Baré JV Shimmin AJ

Aims. Excessive posterior pelvic tilt (PT) may increase the risk of anterior instability after total hip arthroplasty (THA). The aim of this study was to investigate the changes in PT occurring from the preoperative supine to postoperative standing position following THA, and identify factors associated with significant changes in PT. Methods. Supine PT was measured on preoperative CT scans and standing PT was measured on preoperative and one-year postoperative standing lateral radiographs in 933 patients who underwent primary THA. Negative values indicate posterior PT. Patients with > 13° of posterior PT from preoperative supine to postoperative standing (ΔPT ≤ -13°) radiographs, which corresponds to approximately a 10° increase in functional anteversion of the acetabular component, were compared with patients with less change (ΔPT > -13°). Logistic regression analysis was used to assess preoperative demographic and spinopelvic parameters predictive of PT changes of ≤ -13°. The area under receiver operating characteristic curve (AUC) determined the diagnostic accuracy of the predictive factors. Results. PT changed from a mean of 3.8° (SD 6.0°)) preoperatively to -3.5° (SD 6.9°) postoperatively, a mean change of -7.4 (SD 4.5°; p < 0.001). A total of 95 patients (10.2%) had ≤ -13° change in PT from preoperative supine to postoperative standing. The strongest predictive preoperative factors of large changes in PT (≤ -13°) from preoperative supine to postoperative standing were a large posterior change in PT from supine to standing, increased supine PT, and decreased standing PT (p < 0.001). Flexed-seated PT (p = 0.006) and female sex (p = 0.045) were weaker significant predictive factors. When including all predictive factors, the accuracy of the AUC prediction was 84.9%, with 83.5% sensitivity and 71.2% specificity. Conclusion. A total of 10% of patients had > 13° of posterior PT postoperatively compared with their supine pelvic position, resulting in an increased functional anteversion of > 10°. The strongest predictive factors of changes in postoperative PT were the preoperative supine-to-standing differences, the anterior supine PT, and the posterior standing PT. Surgeons who introduce the acetabular component with the patient supine using an anterior approach should be aware of the potentially large increase in functional anteversion occurring in these patients. Cite this article: Bone Joint J 2024;106-B(3 Supple A):74–80


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1662 - 1668
1 Nov 2021
Bhanushali A Chimutengwende-Gordon M Beck M Callary SA Costi K Howie DW Solomon LB

Aims. The aims of this study were to compare clinically relevant measurements of hip dysplasia on radiographs taken in the supine and standing position, and to compare Hip2Norm software and Picture Archiving and Communication System (PACS)-derived digital radiological measurements. Methods. Preoperative supine and standing radiographs of 36 consecutive patients (43 hips) who underwent periacetabular osteotomy surgery were retrospectively analyzed from a single-centre, two-surgeon cohort. Anterior coverage (AC), posterior coverage (PC), lateral centre-edge angle (LCEA), acetabular inclination (AI), sharp angle (SA), pelvic tilt (PT), retroversion index (RI), femoroepiphyseal acetabular roof (FEAR) index, femoroepiphyseal horizontal angle (FEHA), leg length discrepancy (LLD), and pelvic obliquity (PO) were analyzed using both Hip2Norm software and PACS-derived measurements where applicable. Results. Analysis of supine and standing radiographs resulted in significant variation for measurements of PT (p < 0.001) and AC (p = 0.005). The variation in PT correlated with the variation in AC in a limited number of patients (R. 2. = 0.378; p = 0.012). Conclusion. The significant variation in PT and AC between supine and standing radiographs suggests that it may benefit surgeons to have both radiographs when planning surgical correction of hip dysplasia. We also recommend using PACS-derived measurements of AI and SA due to the poor interobserver error on Hip2Norm. Cite this article: Bone Joint J 2021;103-B(11):1662–1668


Bone & Joint Open
Vol. 4, Issue 1 | Pages 3 - 12
4 Jan 2023
Hardwick-Morris M Twiggs J Miles B Al-Dirini RMA Taylor M Balakumar J Walter WL

Aims. Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation. Methods. This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC). Results. Highly significant differences between the symptomatic and asymptomatic cohorts were observed for iliopsoas impingement. Logistic regression models determined that the impingement values significantly predicted the probability of groin pain. The simulation had a sensitivity of 74%, specificity of 100%, and an AUC of 0.86. Conclusion. We developed a computational model that can quantify iliopsoas impingement and verified its accuracy in a case-controlled investigation. This tool has the potential to be used preoperatively, to guide decisions about optimal cup placement, and postoperatively, to assist in the diagnosis of iliopsoas tendonitis. Cite this article: Bone Jt Open 2023;4(1):3–12


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 47 - 51
1 Jul 2020
Kazarian GS Schloemann DT Barrack TN Lawrie CM Barrack RL

Aims. The aims of this study were to determine the change in the sagittal alignment of the pelvis and the associated impact on acetabular component position at one-year follow-up after total hip arthroplasty (THA). Methods. This study represents the one-year follow-up of a previous short-term study at our institution. Using the patient population from our prior study, the radiological pelvic ratio was assessed in 91 patients undergoing THA, of whom 50 were available for follow-up of at least one year (median 1.5; interquartile range (IQR) 1.1 to 2.0). Anteroposterior radiographs of the pelvis were obtained in the standing position preoperatively and at one year postoperatively. Pelvic ratio was defined as the ratio between the vertical distance from the inferior sacroiliac (SI) joints to the superior pubic symphysis and the horizontal distance between the inferior SI joints. Apparent acetabular component position changes were determined from the change in pelvic ratio. A change of at least 5° was considered clinically meaningful. Results. Pelvic ratio decreased (posterior tilt) in 54.0% (27) of cases, did not change significantly in 34.0% (17) of cases, and increased (anterior tilt) in 12.0% (6) of cases when comparing preoperative to one-year postoperative radiographs. This would correspond with 5° to 10° of abduction error in 22.0% of cases and > 10° of error in 6.0%. Likewise, this would correspond with 5° to 10° of version error in 22.0% of cases and > 10° of error in 44.0%. Conclusion. Pelvic sagittal alignment is dynamic and variable after THA, and these changes persist to the one-year postoperative period, altering the orientation of the acetabular component. Surgeons who individualize the acetabular component placement based on preoperative functional radiographs should consider that the rotation of the pelvis (and thus the component version and inclination) changes one year postoperatively. Cite this article: Bone Joint J 2020;102-B(7 Supple B):47–51


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 45 - 50
1 Jun 2019
Schloemann DT Edelstein AI Barrack RL

Aims. The aims of this study were to determine the change in pelvic sagittal alignment before, during, and after total hip arthroplasty (THA) undertaken with the patient in the lateral decubitus position, and to determine the impact of these changes on acetabular component position. Patients and Methods. We retrospectively compared the radiological pelvic ratio among 91 patients undergoing THA. In total, 41 patients (46%) were female. The mean age was 61.6 years (. sd. 10.7) and the mean body mass index (BMI) was 20.0 kg/m. 2. (. sd. 5.5). Anteroposterior radiographs were obtained: in the standing position preoperatively and at six weeks postoperatively; in the lateral decubitus position after trial reduction intraoperatively; and in the supine position in the post-anaesthesia care unit. Pelvic ratio was defined as the ratio between the vertical distance from the inferior aspect of the sacroiliac (SI) joints to the superior pubic symphysis and the horizontal distance between the inferior aspect of the SI joints. Changes in the apparent component position based on changes in pelvic ratio were determined, with a change of > 5° considered clinically significant. Analyses were performed using Wilcoxon’s signed-rank test, with p < 0.05 considered significant. Results. Intraoperatively, in the lateral decubitus position, the pelvic ratio increased (anterior tilt) in 69.4% of cases, did not change significantly in 20.4%, and decreased (posterior tilt) in 10.2% of cases. When six-week postoperative radiographs were compared with preoperative radiographs, the pelvic ratio decreased in 44.9% of cases, did not change significantly in 42.3%, and increased in 12.8% of cases. This change in alignment correlated with a change in acetabular component version of > 5° in 79.6% of cases intraoperatively and 57.7% of cases at six weeks postoperatively. Conclusion. Changes in pelvic sagittal pelvic position occur throughout THA that, if unaccounted for, introduce errors in acetabular component placement. The use of intraoperative imaging may help the appropriate placement of the acetabular component. Cite this article: Bone Joint J 2019;101-B(6 Supple B):45–50


Bone & Joint Research
Vol. 5, Issue 5 | Pages 198 - 205
1 May 2016
Wang WJ Liu F Zhu Y Sun M Qiu Y Weng WJ

Objectives. Normal sagittal spine-pelvis-lower extremity alignment is crucial in humans for maintaining an ergonomic upright standing posture, and pathogenesis in any segment leads to poor balance. The present study aimed to investigate how this sagittal alignment can be affected by severe knee osteoarthritis (KOA), and whether associated changes corresponded with symptoms of lower back pain (LBP) in this patient population. Methods. Lateral radiograph films in an upright standing position were obtained from 59 patients with severe KOA and 58 asymptomatic controls free from KOA. Sagittal alignment of the spine, pelvis, hip and proximal femur was quantified by measuring several radiographic parameters. Global balance was accessed according to the relative position of the C7 plumb line to the sacrum and femoral heads. The presence of chronic LBP was documented. Comparisons between the two groups were carried by independent samples t-tests or chi-squared test. Results. Patients with severe KOA showed significant backward femoral inclination (FI), hip flexion, forward spinal inclination, and higher prevalence of global imbalance (27.1% versus 3.4%, p < 0.001) compared with controls. In addition, patients with FI of 10° (n = 23) showed reduced lumbar lordosis and significant forward spinal inclination compared with controls, whereas those with FI > 10° (n = 36) presented with significant pelvic anteversion and hip flexion. A total of 39 patients with KOA (66.1%) suffered from LBP. There was no significant difference in sagittal alignment between KOA patients with and without LBP. Conclusions. The sagittal alignment of spine-pelvis-lower extremity axis was significantly influenced by severe KOA. The lumbar spine served as the primary source of compensation, while hip flexion and pelvic anteversion increased for further compensation. Changes in sagittal alignment may not be involved in the pathogenesis of LBP in this patient population. Cite this article: W. J. Wang, F. Liu, Y.W. Zhu, M.H. Sun, Y. Qiu, W. J. Weng. Sagittal alignment of the spine-pelvis-lower extremity axis in patients with severe knee osteoarthritis: A radiographic study. Bone Joint Res 2016;5:198–205. DOI:10.1302/2046-3758.55.2000538


Bone & Joint Open
Vol. 6, Issue 1 | Pages 93 - 102
15 Jan 2025
Kawai T Nishitani K Okuzu Y Goto K Kuroda Y Kuriyama S Nakamura S Matsuda S

Aims

This study was performed to investigate the association between the acetabular morphology and the joint space narrowing rate (JSNR) in the non-arthritic hip.

Methods

We retrospectively reviewed standing whole-leg radiographs of patients who underwent knee arthroplasty from February 2012 to March 2020 at our institute. Patients with a history of hip surgery, Kellgren-Lawrence grade ≥ II hip osteoarthritis, or rheumatoid arthritis were excluded. The hip JSNR was measured, and the normalized JSNR (nJSNR) was calculated by calibrating the joint space width with the size of the femoral head in 395 patients (790 hips) with a mean age of 73.7 years (SD 8.6). The effects of the lateral centre-edge angle (CEA) and acetabular roof obliquity (ARO) in the standing and supine positions were examined using a multivariate regression model.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1326 - 1331
1 Oct 2013
Eilander W Harris SJ Henkus HE Cobb JP Hogervorst T

Orientation of the acetabular component influences wear, range of movement and the incidence of dislocation after total hip replacement (THR). During surgery, such orientation is often referenced to the anterior pelvic plane (APP), but APP inclination relative to the coronal plane (pelvic tilt) varies substantially between individuals. In contrast, the change in pelvic tilt from supine to standing (dPT) is small for nearly all individuals. Therefore, in THR performed with the patient supine and the patient’s coronal plane parallel to the operating table, we propose that freehand placement of the acetabular component placement is reliable and reflects standing (functional) cup position. We examined this hypothesis in 56 hips in 56 patients (19 men) with a mean age of 61 years (29 to 80) using three-dimensional CT pelvic reconstructions and standing lateral pelvic radiographs. We found a low variability of acetabular component placement, with 46 implants (82%) placed within a combined range of 30° to 50° inclination and 5° to 25° anteversion. Changing from the supine to the standing position (analysed in 47 patients) was associated with an anteversion change < 10° in 45 patients (96%). dPT was < 10° in 41 patients (87%). In conclusion, supine THR appears to provide reliable freehand acetabular component placement. In most patients a small reclination of the pelvis going from supine to standing causes a small increase in anteversion of the acetabular component. Cite this article: Bone Joint J 2013;95-B:1326–31


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 431 - 438
15 Mar 2023
Vendeuvre T Tabard-Fougère A Armand S Dayer R

Aims

This study aimed to evaluate rasterstereography of the spine as a diagnostic test for adolescent idiopathic soliosis (AIS), and to compare its results with those obtained using a scoliometer.

Methods

Adolescents suspected of AIS and scheduled for radiographs were included. Rasterstereographic scoliosis angle (SA), maximal vertebral surface rotation (ROT), and angle of trunk rotation (ATR) with a scoliometer were evaluated. The area under the curve (AUC) from receiver operating characteristic (ROC) plots were used to describe the discriminative ability of the SA, ROT, and ATR for scoliosis, defined as a Cobb angle > 10°. Test characteristics (sensitivity and specificity) were reported for the best threshold identified using the Youden method. AUC of SA, ATR, and ROT were compared using the bootstrap test for two correlated ROC curves method.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care.

Cite this article: Bone Joint J 2024;106-B(11):1206–1215.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 231 - 244
1 Apr 2023
Lukas KJ Verhaegen JCF Livock H Kowalski E Phan P Grammatopoulos G

Aims

Spinopelvic characteristics influence the hip’s biomechanical behaviour. However, to date there is little knowledge defining what ‘normal’ spinopelvic characteristics are. This study aims to determine how static spinopelvic characteristics change with age and ethnicity among asymptomatic, healthy individuals.

Methods

This systematic review followed the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines to identify English studies, including ≥ 18-year-old participants, without evidence of hip or spine pathology or a history of previous surgery or interventional treatment, documenting lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), and pelvic incidence (PI). From a total of 2,543 articles retrieved after the initial database search, 61 articles were eventually selected for data extraction.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1473 - 1476
1 Nov 2008
Ibrahim T Gabbar OA El-Abed K Hutchinson MJ Nelson IW

Our aim in this prospective radiological study was to determine whether the flexibility rate calculated from radiographs obtained during forced traction under general anaesthesia, was better than that of fulcrum-bending radiographs before corrective surgery in predicting the extent of the available correction in patients with idiopathic scoliosis. We evaluated 33 patients with a Cobb angle > 60° on a standing posteroanterior radiograph, who had been treated by posterior correction. Pre-operative standing fulcrum-bending radiographs and those with forced-traction under general anaesthesia were obtained. Post-operative standing radiographs were taken after surgical correction. The mean forced-traction flexibility rate was 55% (. sd. 11.3) which was significantly higher than the mean fulcrum-bending flexibility rate of 32% (. sd. 16.1) (p < 0.001). We found no correlation between either the forced-traction or fulcrum-bending flexibility rates and the correction rate post-operatively (p = 0.24 and p = 0.44, respectively). Radiographs obtained during forced traction under general anaesthesia were better at predicting the flexibility of the curve than fulcrum-bending radiographs in curves with a Cobb angle > 60° in the standing position and may identify those patients for whom supplementary anterior surgery can be avoided


Bone & Joint 360
Vol. 12, Issue 5 | Pages 15 - 18
1 Oct 2023

The October 2023 Hip & Pelvis Roundup360 looks at: Femoroacetabular impingement syndrome at ten years – how do athletes do?; Venous thromboembolism in patients following total joint replacement: are transfusions to blame?; What changes in pelvic sagittal tilt occur 20 years after total hip arthroplasty?; Can stratified care in hip arthroscopy predict successful and unsuccessful outcomes?; Hip replacement into your nineties; Can large language models help with follow-up?; The most taxing of revisions – proximal femoral replacement for periprosthetic joint infection – what’s the benefit of dual mobility?


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1284 - 1292
1 Nov 2024
Moroder P Poltaretskyi S Raiss P Denard PJ Werner BC Erickson BJ Griffin JW Metcalfe N Siegert P

Aims

The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different.

Methods

A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims

Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement.

Methods

This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 786 - 791
1 Jul 2022
Jenkinson MRJ Peeters W Hutt JRB Witt JD

Aims

Acetabular retroversion is a recognized cause of hip impingement and can be influenced by pelvic tilt (PT), which changes in different functional positions. Positional changes in PT have not previously been studied in patients with acetabular retroversion.

Methods

Supine and standing anteroposterior (AP) pelvic radiographs were retrospectively analyzed in 69 patients treated for symptomatic acetabular retroversion. Measurements were made for acetabular index (AI), lateral centre-edge angle (LCEA), crossover index, ischial spine sign, and posterior wall sign. The change in the angle of PT was measured both by the sacro-femoral-pubic (SFP) angle and the pubic symphysis to sacroiliac (PS-SI) index.