Cigarette smoking has a negative impact on the skeletal system, causes a decrease in bone mass in both young and old patients, and is considered a risk factor for the development of osteoporosis. In addition, it disturbs the bone healing process and prolongs the healing time after fractures. The mechanisms by which cigarette smoking impairs fracture healing are not fully understood. There are few studies reporting the effects of cigarette smoking on new blood vessel formation during the early stage of fracture healing. We tested the hypothesis that cigarette smoke inhalation may suppress angiogenesis and delay fracture healing. We established a custom-made chamber with airflow for rats to inhale cigarette smoke continuously, and tested our hypothesis using a femoral osteotomy model, radiograph and microCT imaging, and various biomechanical and biological tests.Aims
Methods
There remains confusion in the literature with regard to the spinopelvic relationship, and its contribution to ideal acetabular component position. Critical assessment of the literature has been limited by use of conflicting terminology and definitions of new concepts that further confuse the topic. In 2017, the concept of a Hip-Spine Workgroup was created with the first meeting held at the American Academy of Orthopedic Surgeons Annual Meeting in 2018. The goal of this workgroup was to first help standardize terminology across the literature so that as a topic, multiple groups could produce literature that is immediately understandable and applicable. This consensus review from the Hip-Spine Workgroup aims to simplify the spinopelvic relationship, offer hip surgeons a concise summary of available literature, and select common terminology approved by both hip surgeons and spine surgeons for future research. Cite this article:
We have examined the process of fusion of the intertransverse processes and bone graft in the rabbit by in situ hybridisation and evaluated the spatial and temporal expression of genes encoding pro-α1 (I) collagen (COL1A1), pro-α1 (II) collagen (COL2A1) and pro-α1 (X) collagen (COL10A1). Beginning at two weeks after operation, osteogenesis and chondrogenesis occurred around the transverse process and the grafted bone at the central portion of the area of the fusion mass. Osteoblasts and osteocytes at the newly-formed woven bone expressed COL1A1. At the cartilage, most chondrocytes expressed COL2A1 and some hypertrophic chondrocytes COL10A1. In some regions, co-expression of COL1A1 and COL2A1 was observed. At four weeks, such expressions for COL1A1, COL2A1 and COL10A1 became prominent at the area of the fusion mass. From four to six weeks, bone remodelling progressed from the area of the transverse processes towards the central zone. Osteoblasts lining the trabeculae expressed a strong signal for COL1A1. At the central portion of the area of the fusion mass, endochondral ossification progressed and chondrocytes expressed COL2A1 and COL10A1. Our findings show that the fusion process begins with the synthesis of collagens around the transverse processes and around the grafted bone independently. Various spatial and temporal osteogenic and chondrogenic responses, including intramembranous, endochondral and transchondroid bone formation, progress after bone grafting at the intertransverse processes. Bone formation through cartilage may play an important role in posterolateral
We have reviewed 80 children who were involved in the Medical Research Council (UK) trial of surgical treatment for tuberculosis of the spine in Hong Kong. Radical surgery or debridement had been performed at mean ages of 7.6 years (n = 47) and 5.1 years (n = 33) respectively. The patients were followed up to skeletal maturity (mean 17 years). Spinal deformity was measured on lateral radiographs taken preoperatively, at six months, one year, five years and at final follow-up. Radical surgery and grafting produced a reduction in kyphos and deformity angles at six months; this correction was maintained during the growth period. By contrast, after debridement surgery there was an increase in deformity at six months, with a tendency to some spontaneous correction during the growth period. There were statistically significant differences between angles for the radical and debridement groups only at six months postoperatively, but the changes during later follow-up were similar in the radical and debridement groups. Our findings highlight the importance of the surgical correction of deformity, and provide no evidence to suggest that disproportionate posterior spinal growth contributes to progression of deformity after anterior
One hundred and sixty-seven patients with adolescent idiopathic scoliosis were allocated prospectively to one of three different groups for correction before undergoing posterior
Postoperative radiculopathy is a complication of posterior cervical decompression associated with tethering of the nerve root. We reviewed retrospectively 287 consecutive patients with cervical compression myelopathy who had been treated by multilevel cervical laminectomy and identified 37 (12.9%) with postoperative radiculopathy. There were 27 men and ten women with a mean age of 56 years at the time of operation. The diagnosis was either cervical spondylosis (25 patients) or ossification of the posterior longitudinal ligament (12 patients). Radiculopathy was observed from four hours to six days after surgery. The most frequent pattern of paralysis was involvement of the C5 and C6 roots of the motor-dominant type. The mean time for recovery was 5.4 months (two weeks to three years). The results at follow-up showed that the rate of motor recovery was negatively related to the duration of complete recovery of postoperative radiculopathy (γ = −0.832, p <
0.01) and that patients with spondylotic myelopathy had a significantly better rate of clinical recovery than those with ossification of the posterior longitudinal ligament (t = 2.960, p <
0.01). Postoperative radiculopathy may be prevented by carrying out an anterior decompression in conjunction with
Medical comorbidities are a critical factor in the decision-making process for operative management and risk-stratification. The Hierarchical Condition Categories (HCC) risk adjustment model is a powerful measure of illness severity for patients treated by surgeons. The HCC is utilized by Medicare to predict medical expenditure risk and to reimburse physicians accordingly. HCC weighs comorbidities differently to calculate risk. This study determines the prevalence of medical comorbidities and the average HCC score in Medicare patients being evaluated by neurosurgeons and orthopaedic surgeon, as well as a subset of academic spine surgeons within both specialities, in the USA. The Medicare Provider Utilization and Payment Database, which is based on data from the Centers for Medicare and Medicaid Services’ National Claims History Standard Analytic Files, was analyzed for this study. Every surgeon who submitted a valid Medicare Part B non-institutional claim during the 2013 calendar year was included in this study. This database was queried for medical comorbidities and HCC scores of each patient who had, at minimum, a single office visit with a surgeon. This data included 21,204 orthopaedic surgeons and 4,372 neurosurgeons across 54 states/territories in the USA.Aims
Methods
To evaluate the histopathological examination of peri-implant tissue samples as a technique in the diagnosis of postoperative spinal implant infection (PSII). This was a retrospective analysis. Patients who underwent revision spinal surgery at our institution were recruited for this study. PSII was diagnosed by clinical signs, histopathology, and microbiological examination of intraoperatively collected samples. Histopathology was defined as the gold standard. The sensitivity for histopathology was calculated. A total of 47 patients with PSII and at least one microbiological and histopathological sample were included in the study.Aims
Methods
Patients with abnormal spinopelvic mobility are at increased risk for instability. Measuring the change in sacral slope (ΔSS) can help determine spinopelvic mobility preoperatively. Sacral slope (SS) should decrease at least 10° to demonstrate adequate posterior pelvic tilt. There is potential for different ΔSS measurements in the same patient based on sitting posture. The purpose of this study was to determine the effect of sitting posture on the ΔSS in patients undergoing total hip arthroplasty (THA). In total, 51 patients undergoing THA were reviewed to quantify the variability in preoperative spinopelvic mobility when measuring two different sitting positions using SS for planning.Aims
Methods
Studying the indications for revision total hip arthroplasty (THA) may enable surgeons to change their practice during the initial procedure, thereby reducing the need for revision surgery. The aim of this study was to identify and describe the potentially avoidable indications for revision THA within five years of the initial procedure. A retrospective review of 117 patients (73 women, 44 men; mean age 61.5 years (27 to 88)) who met the inclusion criteria was conducted. Three adult reconstruction surgeons independently reviewed the radiographs and medical records, and they classified the revision THAs into two categories: potentially avoidable and unavoidable. Baseline demographics, perioperative details, and quality outcomes up to the last follow-up were recorded.Aims
Patients and Methods
The coronavirus disease 2019 (COVID-19) pandemic has led to unprecedented challenges to healthcare systems worldwide. Orthopaedic departments have adopted business continuity models and guidelines for essential and non-essential surgeries to preserve hospital resources as well as protect patients and staff. These guidelines broadly encompass reduction of ambulatory care with a move towards telemedicine, redeployment of orthopaedic surgeons/residents to the frontline battle against COVID-19, continuation of education and research through web-based means, and cancellation of non-essential elective procedures. However, if containment of COVID-19 community spread is achieved, resumption of elective orthopaedic procedures and transition plans to return to normalcy must be considered for orthopaedic departments. The COVID-19 pandemic also presents a moral dilemma to the orthopaedic surgeon considering elective procedures. What is the best treatment for our patients and how does the fear of COVID-19 influence the risk-benefit discussion during a pandemic? Surgeons must deliberate the fine balance between elective surgery for a patient’s wellbeing versus risks to the operating team and utilization of precious hospital resources. Attrition of healthcare workers or Orthopaedic surgeons from restarting elective procedures prematurely or in an unsafe manner may render us ill-equipped to handle the second wave of infections. This highlights the need to develop effective screening protocols or preoperative COVID-19 testing before elective procedures in high-risk, elderly individuals with comorbidities. Alternatively, high-risk individuals should be postponed until the risk of nosocomial COVID-19 infection is minimal. In addition, given the higher mortality and perioperative morbidity of patients with COVID-19 undergoing surgery, the decision to operate must be carefully deliberated. As we ramp-up elective services and get “back to business” as orthopaedic surgeons, we have to be constantly mindful to proceed in a cautious and calibrated fashion, delivering the best care, while maintaining utmost vigilance to prevent the resurgence of COVID-19 during this critical transition period. Cite this article:
We have evaluated the use of a synthetic porous ceramic (Triosite) as a substitute for bone graft in posterior
The aim of this study was to investigate the impact of maturity status at the time of surgery on final spinal height in patients with an adolescent idiopathic scoliosis (AIS) using the spine-pelvic index (SPI). The SPI is a self-control ratio that is independent of age and maturity status. The study recruited 152 female patients with a Lenke 1 AIS. The additional inclusion criteria were a thoracic Cobb angle between 45° and 70°, Risser 0 to 1 or 3 to 4 at the time of surgery, and follow-up until 18 years of age or Risser stage 5. The patients were stratified into four groups: Risser 0 to 1 and selective fusion surgery (Group 1), Risser 0 to 1 and non-selective fusion (Group 2), Risser 3 to 4 and selective fusion surgery (Group 3), and Risser 3 to 4 and non-selective fusion (Group 4). The height of spine at follow-up (HOSf) and height of pelvis at follow-up (HOPf) were measured and the predicted HOS (pHOS) was calculated as 2.22 (SPI) × HOPf. One-way analysis of variance (ANOVA) was performed for statistical analysis.Aims
Patients and Methods
The purpose of this study was to evaluate the incidence and analyze the trends of surgeon-reported complications following surgery for adolescent idiopathic scoliosis (AIS) over a 13-year period from the Scoliosis Research Society (SRS) Morbidity and Mortality database. All patients with AIS between ten and 18 years of age, entered into the SRS Morbidity and Mortality database between 2004 and 2016, were analyzed. All perioperative complications were evaluated for correlations with associated factors. Complication trends were analyzed by comparing the cohorts between 2004 to 2007 and 2013 to 2016.Aims
Methods
Significant correction of an adolescent idiopathic scoliosis in the coronal plane through a posterior approach is associated with hypokyphosis. Factors such as the magnitude of the preoperative coronal curve, the use of hooks, number of levels fused, preoperative kyphosis, screw density, and rod type have all been implicated. Maintaining the normal thoracic kyphosis is important as hypokyphosis is associated with proximal junctional failure (PJF) and early onset degeneration of the spine. The aim of this study was to determine if coronal correction per se was the most relevant factor in generating hypokyphosis. A total of 95 patients (87% female) with a median age of 14 years were included in our study. Pre- and postoperative radiographs were measured and the operative data including upper instrumented vertebra (UIV), lower instrumented vertebra (LIV), metal density, and thoracic flexibility noted. Further analysis of the post-surgical coronal outcome (group 1 < 60% correction and group 2 ≥ 60%) were studied for their association with the postoperative kyphosis in the sagittal plane using univariate and multivariate logistic regression.Aims
Methods
1. Primary lumbar vertebral instability or "pseudo-spondylolisthesis" varies from about 3 millimetres to 1·7 centimetres, and is perhaps the commonest radiological sign associated with lumbo-sacral pain after the third decade of life. It was observed in 28·6 per cent of 500 consecutive cases of lumbo-sacral pain. The next commonest cause is gross disc degeneration, which is a late result of instability. 2. The secondary instability that may accompany a nuclear prolapse or osteoarthritis is excluded from this discussion. 3. This lumbar instability is an early sign of "incipient disc degeneration," occurring before narrowing of the disc space, sclerosis of the epiphysial rings, or osteophyte formation becomes evident. The instability in the lower lumbar region is caused by incomplete radial posterior tears, usually between the fourth and fifth lumbar vertebrae; and in the upper lumbar region from anterior concentric fissures or slits between some of the lamellae of the annulus fibrosus. 4. As shown radiologically, lumbar instability is commonest between L.4-5 and is rare between L.5 and sacrum because the facets between L.5-S.1 normally face forwards and backwards and thus resist anterior sliding. 5. The usual direction of antero-posterior sliding in the case of the upper four lumbar vertebrae is posteriorâthat is, the upper vertebra is displaced backwards on the one immediately below it during full extension in the erect position. The displacement tends to disappear on forced flexion, which may cause anterior displacement. On the other hand, the reverse displacement may exist between the fifth lumbar vertebra and the sacrum. 6. Operative treatment by bone grafting is a last resort in carefully selected individuals. After operation the patient rests in bed for three months without rigid splinting. Bone grafting is best for a localised lesion (affecting only one disc); it is generally not advisable if more than two discs are involved. 7. The results in thirty patients treated by
1. Five cases of scoliosis with paraplegia are reported, and thirty-six comparable cases from the literature are reviewed. These forty-one cases have been studied with the object of determining the etiology of scoliosis, the reason why cord compression sometimes develops, and the results of conservative and operative treatment of such compression of the cord. 2. The cause of paraplegia is nearly always compression of the spinal cord by the dura, which, in severe scoliosis, is under longitudinal tension because of its firm attachment to the foramen magnum above and the sacrum below. Such tension, resisting displacement of the spinal cord from the straight line, may be shown to cause incomplete spinal block even when there is no paralysis. 3. When paralysis occurs it usually develops during the years of most rapid growth, the tight dura being unable to accommodate itself to the rate of growth of the spinal column; cord compression is probably increased by narrowing of the dural sac by rotational displacement. 4. The most striking results have been secured by laminectomy with section of the dura and sometimes division of dentate ligaments and tight nerve roots. After such division there is evidence of release of compression: the cord herniates through the dural slit; and spinal pulsation returns. 5. It is important to control bleeding in order to avoid post-operative compression by blood clot; and to prevent leakage of cerebro-spinal fluid through the arachnoid. 6. It is unwise to perform