Advertisement for orthosearch.org.uk
Results 181 - 200 of 404
Results per page:
Bone & Joint Research
Vol. 9, Issue 3 | Pages 99 - 107
1 Mar 2020
Chang C Jou I Wu T Su F Tai T

Aims

Cigarette smoking has a negative impact on the skeletal system, causes a decrease in bone mass in both young and old patients, and is considered a risk factor for the development of osteoporosis. In addition, it disturbs the bone healing process and prolongs the healing time after fractures. The mechanisms by which cigarette smoking impairs fracture healing are not fully understood. There are few studies reporting the effects of cigarette smoking on new blood vessel formation during the early stage of fracture healing. We tested the hypothesis that cigarette smoke inhalation may suppress angiogenesis and delay fracture healing.

Methods

We established a custom-made chamber with airflow for rats to inhale cigarette smoke continuously, and tested our hypothesis using a femoral osteotomy model, radiograph and microCT imaging, and various biomechanical and biological tests.


Bone & Joint Research
Vol. 9, Issue 2 | Pages 71 - 76
1 Feb 2020
Gao T Lin J Zhang C Zhu H Zheng X

Aims

The purpose of this study was to determine whether intracellular Staphylococcus aureus is associated with recurrent infection in a rat model of open fracture.

Methods

After stabilizing with Kirschner wire, we created a midshaft femur fracture in Sprague-Dawley rats and infected the wound with green fluorescent protein (GFP)-tagged S. aureus. After repeated debridement and negative swab culture was achieved, the isolation of GFP-containing cells from skin, bone marrow, and muscle was then performed. The composition and viability of intracellular S. aureus in isolated GFP-positive cells was assessed. We suppressed the host immune system and observed whether recurrent infection would occur. Finally, rats were assigned to one of six treatment groups (a combination of antibiotic treatment and implant removal/retention). The proportion of successful eradication was determined.


The Journal of Bone & Joint Surgery British Volume
Vol. 39-B, Issue 1 | Pages 134 - 144
1 Feb 1957
Scott JH

1. Bones consist essentially of bundles of collagenous fibres united by a cementing substance in which the inorganic material lies in the form of minute plate-like crystals. 2. During weight bearing and muscle action bones as a whole are deformed to a variable extent. Periods of deformation are followed by periods of relaxed pressure during which the bones tend to return to their normal form. 3. These variations in deformation and elastic recoil set up alternating pressures and tensions within the bones along the bone cyrstal encrusted fibres which make up the trabeculae, lamellae and Haversian systems, and these alternating phases of compression and tension stimulate the activity of osteoblasts so that bone formation predominates over bone resorption. 4. These alterations of pressure and tension are intermittent and reciprocal in nature and do not, as postulated by the trajectorial theory, involve different trabeculae, nor is it necessary to consider whether tension or pressure is the more important phase in determining bone deposition. 5. The pressure exerted by cysts, tumours, erupting teeth, etc., is of a quite different nature, as is the response to trauma or callus formation in the healing of fractures. These processes are essentially vascular phenomena involving localised areas of bony tissue and not bones as mechanical units


Bone & Joint Research
Vol. 9, Issue 9 | Pages 601 - 612
1 Sep 2020
Rajagopal K Ramesh S Walter NM Arora A Katti DS Madhuri V

Aims

Extracellular matrix (ECM) and its architecture have a vital role in articular cartilage (AC) structure and function. We hypothesized that a multi-layered chitosan-gelatin (CG) scaffold that resembles ECM, as well as native collagen architecture of AC, will achieve superior chondrogenesis and AC regeneration. We also compared its in vitro and in vivo outcomes with randomly aligned CG scaffold.

Methods

Rabbit bone marrow mesenchymal stem cells (MSCs) were differentiated into the chondrogenic lineage on scaffolds. Quality of in vitro regenerated cartilage was assessed by cell viability, growth, matrix synthesis, and differentiation. Bilateral osteochondral defects were created in 15 four-month-old male New Zealand white rabbits and segregated into three treatment groups with five in each. The groups were: 1) untreated and allogeneic chondrocytes; 2) multi-layered scaffold with and without cells; and 3) randomly aligned scaffold with and without cells. After four months of follow-up, the outcome was assessed using histology and immunostaining.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 122 - 128
1 Jul 2020
Sodhi N Acuna A Etcheson J Mohamed N Davila I Ehiorobo JO Jones LC Delanois RE Mont MA

Aims

Earlier studies dealing with trends in the management of osteonecrosis of the femoral head (ONFH) identified an increasing rate of total hip arthroplasties (THAs) and a decreasing rate of joint-preserving procedures between 1992 and 2008. In an effort to assess new trends in the management of this condition, this study evaluated the annual trends of joint-preserving versus arthroplasties for patients aged < or > 50 years old, and the incidence of specific operative management techniques.

Methods

A total of 219,371 patients with ONFH were identified from a nationwide database between 1 January 2009 and 31 December 2015. The mean age was 54 years (18 to 90) and 105,298 (48%) were female. The diagnosis was made using International Classification of Disease, Ninth revision, Clinical Modification (ICD-9-CM) and Tenth Revision, Clinical Modification (ICD-10-CM) procedure codes. The percentage of patients managed using each procedure during each year was calculated and compared between years. The trends in the use of the types of procedure were also evaluated.


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 148 - 154
1 Feb 2020
Murray IR Chahla J Frank RM Piuzzi NS Mandelbaum BR Dragoo JL

Cell therapies hold significant promise for the treatment of injured or diseased musculoskeletal tissues. However, despite advances in research, there is growing concern about the increasing number of clinical centres around the world that are making unwarranted claims or are performing risky biological procedures. Such providers have been known to recommend, prescribe, or deliver so called ‘stem cell’ preparations without sufficient data to support their true content and efficacy. In this annotation, we outline the current environment of stem cell-based treatments and the strategies of marketing directly to consumers. We also outline the difficulties in the regulation of these clinics and make recommendations for best practice and the identification and reporting of illegitimate providers.

Cite this article: Bone Joint J 2020;102-B(2):148–154


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 6 | Pages 912 - 915
1 Aug 2001
Salai M Segal E Cohen I Dudkiewicz I Farzame N Pitaru S Savion N

Colchicine is often used in the treatment of diseases such as familial Mediterranean fever (FMF) and gout. We have previously reported that patients with FMF who had colchicine on a daily basis and who had a total hip arthroplasty showed no heterotopic ossification after surgery. The mechanism by which colchicine causes this clinical phenomenon has never been elucidated. We therefore evaluated the effect of various concentrations of colchicine on cell proliferation and mineralisation in tissue culture, using rat and human cells with and without osteogenic potential. Cell proliferation was assessed by direct cell counts and uptake of (. 3. H)thymidine, and mineralisation by measuring the amount of staining by Alizarin Red. Our findings indicate that concentrations of colchicine of up to 3 ng/ml did not affect cell proliferation but inhibition was observed at 10 to 30 ng/ml. Mineralisation decreased to almost 50%, which was the maximum inhibition observed, at concentrations of colchicine of 2.5 ng/ml. These results indicate that colchicine at low concentrations, of up to 3 ng/ml, has the capacity to inhibit selectively bone-like cell mineralisation in culture, without affecting cell proliferation. Further clinical and laboratory studies are necessary to evaluate the effects of colchicine on biological processes involving the proliferation of osteoblasts and tissue mineralisation in vivo, such as the healing of fractures, the formation of heterotopic bone and neoplastic bone growth


Bone & Joint Research
Vol. 9, Issue 7 | Pages 333 - 340
1 Jul 2020
Mumith A Coathup M Edwards TC Gikas P Aston W Blunn G

Aims

Limb salvage in bone tumour patients replaces the bone with massive segmental prostheses where achieving bone integration at the shoulder of the implant through extracortical bone growth has been shown to prevent loosening. This study investigates the effect of multidrug chemotherapy on extracortical bone growth and early radiological signs of aseptic loosening in patients with massive distal femoral prostheses.

Methods

A retrospective radiological analysis was performed on adult patients with distal femoral arthroplasties. In all, 16 patients were included in the chemotherapy group with 18 patients in the non-chemotherapy control group. Annual radiographs were analyzed for three years postoperatively. Dimensions of the bony pedicle, osseointegration of the hydroxyapatite (HA) collar surface, bone resorption at the implant shoulder, and radiolucent line (RLL) formation around the cemented component were analyzed.


Bone & Joint Research
Vol. 8, Issue 2 | Pages 73 - 80
1 Feb 2019
Zhang J Hao X Yin M Xu T Guo F

Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with limited coding potential, which have emerged as novel regulators in many biological and pathological processes, including growth, development, and oncogenesis. Accumulating evidence suggests that lncRNAs have a special role in the osteogenic differentiation of various types of cell, including stem cells from different sources such as embryo, bone marrow, adipose tissue and periodontal ligaments, and induced pluripotent stem cells. Involved in complex mechanisms, lncRNAs regulate osteogenic markers and key regulators and pathways in osteogenic differentiation. In this review, we provide insights into the functions and molecular mechanisms of lncRNAs in osteogenesis and highlight their emerging roles and clinical value in regenerative medicine and osteogenesis-related diseases.

Cite this article: J. Zhang, X. Hao, M. Yin, T. Xu, F. Guo. Long non-coding RNA in osteogenesis: A new world to be explored. Bone Joint Res 2019;8:73–80. DOI: 10.1302/2046-3758.82.BJR-2018-0074.R1.


The Journal of Bone & Joint Surgery British Volume
Vol. 36-B, Issue 3 | Pages 474 - 489
1 Aug 1954
Schajowicz F Cabrini RL

1. Histochemical studies have been made of the distribution of alkaline phosphatase, glycogen and acid mucopolysaccharides in normal growing bones (mice, rats and men) and also in forty cases of pathological bone processes (neoplastic and dystrophic). 2. The study of normal material confirmed that alkaline phosphatase is plentiful in calcification of cartilage and even more plentiful in bone formation (whether enchondral or direct). 3. It was observed that glycogen increased in the cartilage areas about to be calcified, and that it disappeared in those calcified. It seemed that osteoblasts did not always contain glycogen. 4. In the pathological material (tumours and dystrophic processes) there was great phosphatase activity in the osteogenic areas and also in the cartilage about to be calcified. Whereas glycogen was plentiful in some cases of neoplastic or reactive osteogenesis, it was absent from others. 5. In every area of normal or pathological ossification, the presence of phosphatase seems to be a rule; glycogen is often but not always present. 6. It appears that alkaline phosphatase plays an important role in the formation of the protein matrix of bone, but is not associated with the elaboration of the mucoprotein cartilage matrix. We believe it is premature to draw any definite conclusion on the behaviour and role of the metachromatic substances in the processes of calcification and ossification. The histochemical study of alkaline phosphatase has shown that this is a valuable method in the detection of reactionary or pathological osteogenic processes which in some cases are difficult to demonstrate with the usual histological methods


The Journal of Bone & Joint Surgery British Volume
Vol. 49-B, Issue 1 | Pages 146 - 153
1 Feb 1967
Lee WR

1 . Normal and diseased bone was obtained by biopsy from five patients suffering from Paget's disease. The tissue was studied by histology, microradiography and quantitative fluorescence microscopy using tetracycline markers. Study of the morphological changes showed that two of the biopsies could be regarded as normal, while one was osteoporotic; two biopsy specimens were in the porotic phase of Paget's disease and the remaining five were in the sclerotic phase. 2. The tetracycline markers were used to measure the linear rate at which bone was deposited on individual surfaces (appositional growth rate) in µ per day and the percentage volume of new bone added to the total volume of bone per day (bone formation rate). The values obtained for appositional growth rate in all the biopsies were of the order of 1 µ per day, but slightly higher values were obtained in the diseased tissue of each individual. The bone formation rate in normal bone from the proximal femur was about 0·04 per cent per day, about 0·13 per cent per day in the porotic phase, and about 0·4 per cent per day in the sclerotic phase of Paget's disease. 3. Although these values must be accepted with some reservation, there seems to be no doubt that there is an upper limit of about 1 µ per day to the rate of deposition of bone on an individual bone surface; this suggests that in Paget's disease the osteoblast behaves as a normal cell


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 3 | Pages 531 - 537
1 May 1999
Corbett SA Hukkanen M Batten J McCarthy ID Polak JM Hughes SPF

Our aim was to investigate whether nitric oxide synthase (NOS) isoforms, responsible for the generation of NO, are expressed during the healing of fractures. To localise the sites of expression compared with those in normal bone we made standardised, stabilised, unilateral tibial fractures in male Wistar rats. Immunostaining was used to determine the precise tissue localisation of the different NOS isoforms. Western blotting was used to assess expression of NOS isoform protein and L-citrulline assays for studies on NOS activity. Control tissue was obtained from both the contralateral uninjured limb and limbs of normal rats. Immunohistochemistry showed increased expression of endothelial NOS (eNOS) to be strongest in the cortical blood vessels and in osteocytes in the early phase of fracture repair. Western blot and image analysis confirmed this initial increase. Significantly elevated calcium-dependent NOS activity was observed at day 1 after fracture. Inducible NOS (iNOS) was localised principally in endosteal osteoblasts and was also seen in chondroblasts especially in the second week of fracture healing. Western blotting showed a reduction in iNOS during the early healing period. Significantly reduced calcium-independent NOS activity was also seen. No neuronal NOS was seen in either fracture or normal tissue. Increased eNOS in bone blood vessels is likely to mediate the increased blood flow recognised during fracture healing. eNOS expression in osteocytes may occur in response to changes in either mechanical or local fluid shear stress. The finding that eNOS is increased and iNOS reduced in early healing of fractures may be important in their successful repair


The Journal of Bone & Joint Surgery British Volume
Vol. 65-B, Issue 3 | Pages 299 - 307
1 May 1983
Schajowicz F Santini Araujo E Berenstein M

Out of 21 900 cases filed at the Latin-American Registry of Bone Pathology between April 1940 and July 1981, there were 987 with Paget's disease (4.51 per cent); 62 of these (6.28 per cent) were complicated by sarcoma and two were associated with giant-cell tumours of bone (osteoclastoma) without signs of malignancy. There was a slight predominance of men and the ages ranged from 45 to 87 years, with an average of 66 years. The most frequent sites were the femur (23 cases), the humerus (nine), the pelvis (10), and the tibia (nine). The low incidence of vertebral involvement (five cases) is noteworthy and is in sharp contrast to uncomplicated Paget's disease. The most common tumour type was osteosarcoma (39 cases), followed by fibrosarcoma (15 cases); other varieties (chondrosarcoma, malignant fibrous histiocytoma and reticulum-cell sarcoma) were much rarer. Most of the sarcomata occurred when the Paget's disease was polyostotic. Tumours often developed simultaneously, or at short time intervals, in the same or different bones; these bones had, in all cases, been affected by Paget's disease. The histological features of the osteosarcomata were characteristic, with large numbers of osteoclast giant cells, alternating with atypical osteoblasts, thus exaggerating the anarchic remodelling process of Paget's disease. The neighbouring areas of the pagetic bone showed an increased number of osteoclasts. These facts suggest a possible pathogenetic relationship between sarcoma and Paget's disease; the possibility of both processes having a viral aetiology is discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 37-B, Issue 2 | Pages 266 - 303
1 May 1955
Thomson AD Turner-Warwick RT

1. One hundred and seventy-nine cases of primary malignant bone tumour and giant-cell tumour seen at the Middlesex Hospital since 1925 are reviewed. Tumours arising from non-skeletal tissues in bone have been excluded. 2. The following histological classification is used. Osteosarcoma (osteoblast sarcoma): This tumour is not synonymous with osteogenic (bone-forming) sarcoma. The essential feature is the formation of osteoid tissue by malignant osteoblasts, with no intermediate matrix of cartilage or fibrous tissue. It is the most malignant bone tumour and only four of the thirty-two patients survived three years. Chondrosarcoma: These tumours are composed of cartilage, and some show secondary ossification. The behaviour of this group is related to the degree of cartilaginous differentiation. In general, compared with the osteosarcoma, it is of low-grade malignancy. More than half of the sixty-eight patients survived four years. Fibrosarcoma: The essential feature of this tumour is the production of collagen by malignant fibroblastic tumour cells. Tumours of this type invading the medullary cavity have an average prognosis between that of an osteosarcoma and a chondrosarcoma. Nine of the thirty-four patients survived three years. Spindle-cell sarcoma: These tumours are composed of spindle cells which produce no diagnostic matrix. In spite of the lack of differentiation the outlook is not hopeless. Six of the eleven patients survived for five years or more. Giant-cell tumour: This tumour is composed of a cellular stroma with diagnostic giant cells resembling osteoclasts. It is by no means a benign lesion, for half the tumours recurred after treatment and a quarter of the patients died with metastases. 3. The subdivision of primary malignant skeletal tumours into groups according to the histological pattern appears to be reflected in the behaviour of the individual tumours after treatment. The prognosis of each group has been stated in the appropriate sections


The Journal of Bone & Joint Surgery British Volume
Vol. 50-B, Issue 4 | Pages 866 - 873
1 Nov 1968
Bohr H Ravn HO Werner H

1. Transplantations of autografts and of Kiel bone to the iliac bone and to muscle tissue were performed in rabbits. Through labelling with two tetracycline compounds which have different fluorescent colours in ultraviolet light, bone formation between the labelling periods could be followed. 2. It was shown that bone formation between the fifth and the tenth day after transplantation to bone took place in about 50 per cent of the fresh autografts. Storage of the transplants in saline for one hour before replacement had little adverse effect, whereas exposure to air for one hour seemed to reduce the osteogenic effect of the grafts. Bone formation was not observed in grafts of Kiel bone during this period. 3. The fact that new bone formation in fresh autografts could be demonstrated even during the first four days after transplantation to bone indicates that osteogenic cells from the fresh autografts continue their activity under favourable conditions. This is supported by microradiographic and histological evidence. 4. The amount of callus which developed in close contact with the grafts during the first ten days after transplantation to bone was more pronounced both in fresh autografts and in autografts kept in saline than in autografts exposed to air for one hour. Callus developing at a later stage showed no significant difference between the various grafts, including those of Kiel bone. 5. In fresh autografts transplanted to muscle tissue callus formation could be demonstrated in most cases by the tenth day, indicating either survival of osteoblasts or the transformation of more primitive cells from the graft or from the host bone into osteogenic cells. No bone formation was observed when Kiel bone was embedded in muscle tissue


The Journal of Bone & Joint Surgery British Volume
Vol. 47-B, Issue 1 | Pages 120 - 136
1 Feb 1965
Jeffree GM Price CHG

1. Alkaline and acid phosphatase, non-specific esterase and beta-glucuronidase have been estimated and demonstrated histochemically in a series of bone tumours and allied lesions, of which ten were osteogenic sarcomata, ten were giant-cell lesions, eleven were fibroblastic lesions and seven were tumours of cartilage. 2. Osteogenic sarcoma was found to be characterised by high levels of alkaline phosphatase, with rich staining for this enzyme in the tumour cells. Similar high levels of alkaline phosphatase were found in other bone-forming lesions, such as fibrous dysplasia, a giant-cell sarcoma with osteogenic matrix, and fracture callus. 3. Giant-cell lesions were characterised by high levels of acid phosphatase, and intense staining for this enzyme in the osteoclasts. These cells were also found to be rich in non-specific esterase (as shown by the alpha-naphthyl acetate method) and in beta-glucuronidase, but almost or entirely lacking in alkaline phosphatase. High levels of alkaline phosphatase were not found in giant-cell lesions except in relation to osteogenic matrix. 4. Fibroblastic tumours were characterised by moderate levels of all four enzymes, with little or no staining for phosphatases in the tumour cells; non-specific esterase was generally present in a proportion of the cells. 5. In certain lesions intermediate stages in the differentiation of fibroblasts to osteoblasts were found, notably in fibrous dysplasia, in which the biochemical change preceded the histological. In such lesions high total levels of alkaline phosphatase were found. 6. Cartilaginous tumours were characterised by low levels of all four enzymes, and little histochemical staining except in hypertrophied cells in areas of ossification. 7. It was found in general that the enzyme distributions in these neoplasms and other lesions reflected the findings in comparable reactive and growing normal tissues


Bone & Joint Research
Vol. 9, Issue 5 | Pages 211 - 218
1 May 2020
Hashimoto A Miyamoto H Kobatake T Nakashima T Shobuike T Ueno M Murakami T Noda I Sonohata M Mawatari M

Aims

Biofilm formation is intrinsic to prosthetic joint infection (PJI). In the current study, we evaluated the effects of silver-containing hydroxyapatite (Ag-HA) coating and vancomycin (VCM) on methicillin-resistant Staphylococcus aureus (MRSA) biofilm formation.

Methods

Pure titanium discs (Ti discs), Ti discs coated with HA (HA discs), and 3% Ag-HA discs developed using a thermal spraying were inoculated with MRSA suspensions containing a mean in vitro 4.3 (SD 0.8) x 106 or 43.0 (SD 8.4) x 105 colony-forming units (CFUs). Immediately after MRSA inoculation, sterile phosphate-buffered saline or VCM (20 µg/ml) was added, and the discs were incubated for 24 hours at 37°C. Viable cell counting, 3D confocal laser scanning microscopy with Airyscan, and scanning electron microscopy were then performed. HA discs and Ag HA discs were implanted subcutaneously in vivo in the dorsum of rats, and MRSA suspensions containing a mean in vivo 7.2 (SD 0.4) x 106  or 72.0 (SD 4.2) x 105  CFUs were inoculated on the discs. VCM was injected subcutaneously daily every 12 hours followed by viable cell counting.


Bone & Joint Research
Vol. 7, Issue 10 | Pages 548 - 560
1 Oct 2018
Qayoom I Raina DB Širka A Tarasevičius Š Tägil M Kumar A Lidgren L

During the last decades, several research groups have used bisphosphonates for local application to counteract secondary bone resorption after bone grafting, to improve implant fixation or to control bone resorption caused by bone morphogenetic proteins (BMPs). We focused on zoledronate (a bisphosphonate) due to its greater antiresorptive potential over other bisphosphonates. Recently, it has become obvious that the carrier is of importance to modulate the concentration and elution profile of the zoledronic acid locally. Incorporating one fifth of the recommended systemic dose of zoledronate with different apatite matrices and types of bone defects has been shown to enhance bone regeneration significantly in vivo. We expect the local delivery of zoledronate to overcome the limitations and side effects associated with systemic usage; however, we need to know more about the bioavailability and the biological effects. The local use of BMP-2 and zoledronate as a combination has a proven additional effect on bone regeneration. This review focuses primarily on the local use of zoledronate alone, or in combination with bone anabolic factors, in various preclinical models mimicking different orthopaedic conditions.

Cite this article: I. Qayoom, D. B. Raina, A. Širka, Š. Tarasevičius, M. Tägil, A. Kumar, L. Lidgren. Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: A review. Bone Joint Res 2018;7:548–560. DOI: 10.1302/2046-3758.710.BJR-2018-0015.R2.


Bone & Joint Research
Vol. 8, Issue 8 | Pages 397 - 404
1 Aug 2019
Osagie-Clouard L Sanghani-Kerai A Coathup M Meeson R Briggs T Blunn G

Objectives

Mesenchymal stem cells (MSCs) are of growing interest in terms of bone regeneration. Most preclinical trials utilize bone-marrow-derived mesenchymal stem cells (bMSCs), although this is not without isolation and expansion difficulties. The aim of this study was: to compare the characteristics of bMSCs and adipose-derived mesenchymal stem cells (AdMSCs) from juvenile, adult, and ovarectomized (OVX) rats; and to assess the effect of human parathyroid hormone (hPTH) 1-34 on their osteogenic potential and migration to stromal cell-derived factor-1 (SDF-1).

Methods

Cells were isolated from the adipose and bone marrow of juvenile, adult, and previously OVX Wistar rats, and were characterized with flow cytometry, proliferation assays, osteogenic and adipogenic differentiation, and migration to SDF-1. Experiments were repeated with and without intermittent hPTH 1-34.


Bone & Joint Research
Vol. 8, Issue 1 | Pages 19 - 31
1 Jan 2019
Li M Zhang C Yang Y

Objectives

Many in vitro studies have investigated the mechanism by which mechanical signals are transduced into biological signals that regulate bone homeostasis via periodontal ligament fibroblasts during orthodontic treatment, but the results have not been systematically reviewed. This review aims to do this, considering the parameters of various in vitro mechanical loading approaches and their effects on osteogenic and osteoclastogenic properties of periodontal ligament fibroblasts.

Methods

Specific keywords were used to search electronic databases (EMBASE, PubMed, and Web of Science) for English-language literature published between 1995 and 2017.