This is a retrospective case review of 237 patients with displaced fractures of the acetabulum presenting over a ten-year period, with a minimum follow-up of two years, who were studied to test the hypothesis that the time to surgery was predictive of radiological and functional outcome and varied with the pattern of fracture. Patients were divided into two groups based on the fracture pattern: elementary or associated. The time to surgery was analysed as both a continuous and a categorical variable. The primary outcome measures were the quality of reduction and functional outcome. Logistic regression analysis was used to test our hypothesis, while controlling for potential confounding variables. For elementary fractures, an increase in the time to surgery of one day reduced the odds of an excellent/good functional result by 15% (p = 0.001) and of an anatomical reduction by 18% (p = 0.0001). For associated fractures, the odds of obtaining an excellent/good result were reduced by 19% (p = 0.0001) and an anatomical reduction by 18% (p = 0.0001) per day. When time was measured as a categorical variable, an anatomical reduction was more likely if surgery was performed within 15 days (elementary) and five days (associated). An excellent/good functional outcome was more likely when surgery was performed within 15 days (elementary) and ten days (associated). The time to surgery is a significant predictor of radiological and functional outcome for both elementary and associated displaced fractures of the acetabulum. The organisation of regional trauma services must be capable of satisfying these time-dependent requirements to achieve optimal patient outcomes.
We describe the experience with the first consecutive 230 Birmingham hip resurfacings at our centre. At a mean follow-up of three years (25 to 52 months) survivorship was 99.14% with revision in one patient for a loose acetabular component and one death from unrelated causes. One patient developed a fracture of the femoral neck at six weeks which united unremarkably after a period of non-weight-bearing. The Harris hip score improved from a mean of 62.54 (8 to 92) to 97.74 (61 to 100). The mean flexion improved from 91.52° (25 to 140) to 110.41° (80 to 145). Most patients (97%) considered the outcome to be good or excellent. Our preliminary experience with this implant is encouraging and the results are superior to the earlier generation of resurfacings for the same length of follow-up.
We treated 34 patients with recurrent dislocation of the hip with a constrained acetabular component. Roentgen stereophotogrammetric analysis was performed to assess migration of the prosthesis. The mean clinical follow-up was 3.0 years (2.2 to 4.8) and the radiological follow-up was 2.7 years (2.0 to 4.8). At the latest review six patients had died and none was lost to follow-up. There were four acetabular revisions, three for aseptic loosening and one for deep infection. Another acetabular component was radiologically loose with progressive radiolucent lines in all Gruen zones and was awaiting revision. The overall rate of aseptic loosening was 11.8% (4 of 34). Roentgen stereophotogrammetric analysis in the non-revised components confirmed migration of up to 1.06 mm of translation and 2.32° of rotation at 24 months. There was one case of dislocation and dissociation of the component in the same patient. Of the 34 patients, 33 (97.1%) had no further episodes of dislocation. The constrained acetabular component reported in our study was effective in all but one patient with instability of the hip, but the rate of aseptic loosening was higher than has been reported previously and requires further investigation.