Inflammatory markers such as the C-reactive protein (CRP), white blood cell count and body temperature are easy to measure and are used as indicators of infection. The way in which they change in the early post-operative period after instrumented spinal surgery has not been reported in any depth. We measured these markers pre-operatively and at one, four, seven and 14 days postoperatively in 143 patients who had undergone an instrumented posterior lumbar interbody fusion. The CRP proved to be the only sensitive marker and had returned to its normal level in 48% of patients after 14 days. The CRP on day 7 was never higher than that on day 4. Age, gender, body temperature, operating time and blood loss were not related to the CRP level. A high CRP does not in itself suggest infection, but any increase after four days may presage infection.
Our aim was to review the efficacy of the wound vacuum-assisted closure (VAC) system in the treatment of deep infection after extensive instrumentation and fusion for spinal deformity in children and adolescents. A total of 14 patients with early deep spinal infection were treated using this technique. Of these, 12 had neuromuscular or syndromic problems. Clinical and laboratory data were reviewed. The mean follow-up was 44 months (24 to 72). All wounds healed. Two patients required plastic surgery to speed up the process. In no patient was the hardware removed and there was no loss of correction or recurrent infection. We believe that the wound VAC system is a useful tool in the armamentarium of the spinal surgeon dealing with patients susceptible to wound infections, especially those with neuromuscular diseases. It allows for the retention of the instrumentation and the maintenance of spinal correction. It is reliable and easy to use.
The use of a navigation system in musculoskeletal tumour surgery enables the integration of pre-operative CT and MRI images to generate a precise three-dimensional anatomical model of the site and the extent of the tumour. We carried out six consecutive resections of musculoskeletal tumour in five patients using an existing commercial computer navigation system. There were three women and two men with a mean age of 41 years (24 to 47). Reconstruction was performed using a tumour prosthesis in three lesions and a vascularised fibular graft in one. No reconstruction was needed in two cases. The mean follow-up was 6.9 months (3.5 to 10). The mean duration of surgery was 28 minutes (13 to 50). Examination of the resected specimens showed clear margins in all the tumour lesions and a resection that was exactly as planned.
We carried out a prospective study to determine whether the addition of a recombinant human bone morphogenetic protein (rhBMP-2) to a machined allograft spacer would improve the rate of intervertebral body fusion in the spine. We studied 77 patients who were to undergo an interbody fusion with allograft and instrumentation. The first 36 patients received allograft with adjuvant rhBMP-2 (allograft/rhBMP-2 group), and the next 41, allograft and demineralised bone matrix (allograft/demineralised bone matrix group). Each patient was assessed clinically and radiologically both pre-operatively and at each follow-up visit using standard methods. Follow-up continued for two years. Every patient in the allograft/rhBMP-2 group had fused by six months. However, early graft lucency and significant (>
10%) subsidence were seen radiologically in 27 of 55 levels in this group. The mean graft height subsidence was 27% (13% to 42%) for anterior lumbar interbody fusion, 24% (13% to 40%) for transforaminal lumbar interbody fusion, and 53% (40% to 58%) for anterior cervical discectomy and fusion. Those who had undergone fusion using allograft and demineralised bone matrix lost only a mean of 4.6% (0% to 15%) of their graft height. Although a high rate of fusion (100%) was achieved with rhBMP-2, significant subsidence occurred in more than half of the levels (23 of 37) in the lumbar spine and 33% (6 of 18) in the cervical spine. A 98% fusion rate (62 of 63 levels) was achieved without rhBMP-2 and without the associated graft subsidence. Consequently, we no longer use rhBMP-2 with allograft in our practice if the allograft has to provide significant structural support.
The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each vertebra in 25 human cadaver vertebrae. The dorsal vertebral cortex and subcortical bone corresponding to the entrance site of the screw were removed on one side and preserved on the other. Biomechanical testing showed that the mean peak pull-out strength for the inserted screws, following removal of the dorsal cortex, was 956.16 N. If the dorsal cortex was preserved, the mean peak pullout strength was 1295.64 N. The mean increase was 339.48 N (26.13%; p = 0.033). The bone mineral density correlated positively with peak pull-out strength. Preservation of the dorsal vertebral cortex at the site of insertion of the screw offers a significant increase in peak pull-out strength. This may result from engagement by the final screw threads in the denser bone of the dorsal cortex and the underlying subcortical area. Every effort should be made to preserve the dorsal vertebral cortex during insertion of transpedicular screws.
We studied 15 patients with healed tuberculosis of the spine and a resultant kyphosis. We selected only those with no neurological deficit and performed a wedge resection of the vertebra using a transpedicular approach. The wedge was removed from the apex of the deformity. For those with a neurological deficit, we chose the conventional anterior debridement and decompression with 360° circumferential fusion. At a mean follow-up of 26.8 months (8 to 46) the outcome was good with an increase in the mean Oswestry Disability Index from 56.26 (48 to 62) pre-operatively to 11.2 (6 to 16) at the latest follow-up.
We present the case of a 15-year-old boy with
symptoms due to Klippel–Feil syndrome. Radiographs and CT scans demonstrated
basilar impression, occipitalisation of C1 and fusion of C2/C3.
MRI showed ventral compression of the medullocervical junction.
Skull traction was undertaken pre-operatively to determine whether
the basilar impression could be safely reduced. During traction,
the C3/C4 junction migrated 12 mm caudally and spasticity resolved.
Peri-operative skull-femoral traction enabled posterior occipitocervical
fixation without decompression. Following surgery, cervical alignment
was restored and spasticity remained absent. One year after surgery
he was not limited in his activities.