Since 1996 more than one million metal-on-metal
articulations have been implanted worldwide. Adverse reactions to
metal debris are escalating. Here we present an algorithmic approach
to patient management. The general approach to all arthroplasty
patients returning for follow-up begins with a detailed history,
querying for pain, discomfort or compromise of function. Symptomatic
patients should be evaluated for intra-articular and extra-articular
causes of pain. In large head MoM arthroplasty, aseptic loosening
may be the source of pain and is frequently difficult to diagnose.
Sepsis should be ruled out as a source of pain. Plain radiographs
are evaluated to rule out loosening and osteolysis, and assess component
position. Laboratory evaluation commences with erythrocyte sedimentation
rate and C-reactive protein, which may be elevated. Serum metal
ions should be assessed by an approved facility. Aspiration, with
manual cell count and culture/sensitivity should be performed, with
cloudy to creamy fluid with predominance of monocytes often indicative
of failure. Imaging should include ultrasound or metal artifact
reduction sequence MRI, specifically evaluating for fluid collections
and/or masses about the hip. If adverse reaction to metal debris
is suspected then revision to metal or ceramic-on-polyethylene is indicated
and can be successful. Delay may be associated with extensive soft-tissue
damage and hence poor clinical outcome.
We systematically reviewed the peer-reviewed literature to relate the survival of hybrid metal-on-metal hip resurfacing arthroplasty devices to a National Institute of Clinical Excellence (NICE) benchmark for choosing a primary total hip replacement, which is a survival rate of 90% at a follow-up of ten years. A total of 29 articles (10 621 resurfaced hips) met the inclusion criteria. The mean follow-up ranged from 0.6 to 10.5 years and the survival of the implant ranged from 84% to 100%. Of the 10 621 hips, 370 were revised (3.5%), with aseptic loosening as the most frequent mode of failure. None of the hip resurfacing arthroplasty implants used to date met the full ten-year NICE benchmark of survival. A total of 13 studies showed satisfactory survival compared with the three-year NICE benchmark.
Modern metal-on-metal bearings produce less wear debris and osteolysis, but have the potential adverse effect of release of ions. Improved ceramic-on-ceramic bearings have the lowest wear of all, but the corrosion process has not been analysed. Our aim was to measure the serum ion release (ng/ml) in 23 patients having stable hip prostheses with a ceramic-on-ceramic coupling (group A) and to compare it with the release in 42 patients with a metal-on-metal bearing (group B) in the medium term. Reference values were obtained from a population of 47 healthy subjects (group C). The concentrations of chromium, cobalt, aluminium and titanium were measured. There was a significant increase of cobalt, chromium and aluminium levels (p <
0.05) in group B compared with groups A and C. Group A did not differ significantly from the control group. Despite the apparent advantage of a metal-on-metal coupling, especially in younger patients with a long life expectancy, a major concern arises regarding the extent and duration of ion exposure. For this reason, the low corrosion level in a ceramic-on-ceramic coupling could be advantageous.
The rate and mode of early failure in 463 Birmingham hip resurfacings in a two-centre, multisurgeon series were examined. Of the 463 patients two have died and three were lost to follow-up. The mean radiological and clinical follow-up was for 43 months (6 to 90). We have revised 13 resurfacings (2.8%) including seven for pain, three for fracture, two for dislocation and another for sepsis. Of these, nine had macroscopic and histological evidence of metallosis. The survival at five years was 95.8% (95% confidence interval (CI) 94.1 to 96.8) for revision for all causes and 96.9% (95% CI 95.5 to 98.3) for metallosis. The rate of metallosis related revision was 3.1% at five years. Risk factors for metallosis were female gender, a small femoral component, a high abduction angle and obesity. We do not advocate the use of the Birmingham Hip resurfacing procedure in patients with these risk factors.
We report a 12- to 15-year implant survival assessment
of a prospective single-surgeon series of Birmingham Hip Resurfacings
(BHRs). The earliest 1000 consecutive BHRs including 288 women (335
hips) and 598 men (665 hips) of all ages and diagnoses with no exclusions
were prospectively followed-up with postal questionnaires, of whom
the first 402 BHRs (350 patients) also had clinical and radiological
review. Mean follow-up was 13.7 years (12.3 to 15.3). In total, 59 patients
(68 hips) died 0.7 to 12.6 years following surgery from unrelated
causes. There were 38 revisions, 0.1 to 13.9 years (median 8.7)
following operation, including 17 femoral failures (1.7%) and seven
each of infections, soft-tissue reactions and other causes. With
revision for any reason as the end-point Kaplan–Meier survival analysis
showed 97.4% (95% confidence interval (CI) 96.9 to 97.9) and 95.8%
(95% CI 95.1 to 96.5) survival at ten and 15 years, respectively.
Radiological assessment showed 11 (3.5%) femoral and 13 (4.1%) acetabular
radiolucencies which were not deemed failures and one radiological
femoral failure (0.3%). Our study shows that the performance of the BHR continues to
be good at 12- to 15-year follow-up. Men have better implant survival
(98.0%; 95% CI 97.4 to 98.6) at 15 years than women (91.5%; 95%
CI 89.8 to 93.2), and women <
60 years (90.5%; 95% CI 88.3 to
92.7) fare worse than others. Hip dysplasia and osteonecrosis are
risk factors for failure. Patients under 50 years with osteoarthritis
fare best (99.4%; 95% CI 98.8 to 100 survival at 15 years), with
no failures in men in this group. Cite this article:
Long-term clinical outcomes for ceramic-on-ceramic (CoC) bearings
are encouraging. However, there is a risk of squeaking. Guidelines
for the orientation of the acetabular component are defined from
static imaging, but the position of the pelvis and thus the acetabular
component during activities associated with edge-loading are likely
to be very different from those measured when the patient is supine.
We assessed the functional orientation of the acetabular component. A total of 18 patients with reproducible squeaking in their CoC
hips during deep flexion were investigated with a control group
of 36 non-squeaking CoC hips. The two groups were matched for the
type of implant, the orientation of the acetabular component when
supine, the size of the femoral head, ligament laxity, maximum hip
flexion and body mass index. Aims
Patients and Methods
Hip replacement is a very successful operation and the outcome is usually excellent. There are recognised complications that seem increasingly to give rise to litigation. This paper briefly examines some common scenarios where litigation may be pursued against hip surgeons. With appropriate record keeping, consenting and surgical care, the claim can be successfully defended if not avoided. We hope this short summary will help to highlight some common pitfalls. There is extensive literature available for detailed study.
A modular femoral head–neck junction has practical
advantages in total hip replacement. Taper fretting and corrosion
have so far been an infrequent cause of revision. The role of design
and manufacturing variables continues to be debated. Over the past
decade several changes in technology and clinical practice might
result in an increase in clinically significant taper fretting and
corrosion. Those factors include an increased usage of large diameter
(36 mm) heads, reduced femoral neck and taper dimensions, greater
variability in taper assembly with smaller incision surgery, and
higher taper stresses due to increased patient weight and/or physical
activity. Additional studies are needed to determine the role of
taper assembly compared with design, manufacturing and other implant
variables. Cite this article:
The October 2013 Research Roundup360 looks at: Orthopaedics: a dangerous profession?; Freezing and biomarkers for bone turnover; Herniation or degeneration first?; MARS MRI and metallosis; Programmed cell death in partial thickness cuff tears; Lead glasses for trauma surgery?; Smoking inhibits bone healing; Optimising polyethylene microstructure.
Metal artefact reduction (MAR) MRI is now widely
considered to be the standard for imaging metal-on-metal (MoM) hip
implants. The Medicines and Healthcare Products Regulatory Agency
(MHRA) has recommended cross-sectional imaging for all patients
with symptomatic MoM bearings. This paper describes the natural
history of MoM disease in a 28 mm MoM total hip replacement (THR)
using MAR MRI. Inclusion criteria were patients with MoM THRs who had
not been revised and had at least two serial MAR MRI scans. All
examinations were reported by an experienced observer and classified
as A (normal), B (infection) or C1–C3 (mild, moderate, severe MoM-related
abnormalities). Between 2002 and 2011 a total of 239 MRIs were performed
on 80 patients (two to four scans per THR); 63 initial MRIs (61%)
were normal. On subsequent MRIs, six initially normal scans (9.5%)
showed progression to a disease state; 15 (15%) of 103 THRs with
sequential scans demonstrated worsening disease on subsequent imaging. Most patients with a MoM THR who do not undergo early revision
have normal MRI scans. Late progression (from normal to abnormal,
or from mild to more severe MoM disease) is not common and takes
place over several years. Cite this article:
Peri-prosthetic osteolysis and subsequent aseptic
loosening is the most common reason for revising total hip replacements.
Wear particles originating from the prosthetic components interact
with multiple cell types in the peri-prosthetic region resulting
in an inflammatory process that ultimately leads to peri-prosthetic
bone loss. These cells include macrophages, osteoclasts, osteoblasts
and fibroblasts. The majority of research in peri-prosthetic osteolysis
has concentrated on the role played by osteoclasts and macrophages.
The purpose of this review is to assess the role of the osteoblast
in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts
and contribute to the osteolytic process by two mechanisms. First,
particles and metallic ions have been shown to inhibit the osteoblast
in terms of its ability to secrete mineralised bone matrix, by reducing
calcium deposition, alkaline phosphatase activity and its ability
to proliferate. Secondly, particles and metallic ions have been
shown to stimulate osteoblasts to produce pro inflammatory mediators Cite this article:
A total of 397 hips were randomised to receive
Metasul metal-on-metal (MoM), metal-on-conventional polyethylene (MoP)
or ceramic-on-polyethylene (CoP) bearings using a cemented triple-tapered
polished femoral component (MS-30). There were 129 MoM hips in 123
patients (39 male and 84 female, mean age 63.3 years (40.7 to 72.9)),
137 MoP hips in 127 patients (39 male and 88 female, mean age 62.8
years (24.5 to 72.7)) and 131 CoP hips in 124 patients (51 male
and 73 female, mean age 63.9 years (30.6 to 73.8)). All acetabular
components were cemented Weber polyethylene components with the
appropriate inlay for the MoM articulation. Clinical evaluation
was undertaken using the Harris hip score (HHS) and radiological
assessments were made at two, five and seven years. The HHS and radiological
analysis were available for 341 hips after seven years. The MoM
group had the lowest mean HHS (p = 0.124), a higher rate of revision
(p <
0.001) and a higher incidence of radiolucent lines in unrevised
hips (p <
0.001). In all, 12 revisions had been performed in
12 patients: eight in the MoM group (four for infection, four for
aseptic loosening, three in the MoP group (one each of infection,
dislocation and pain) and one in the CoP group (infection). Our findings reveal no advantage to the MoM bearing and identified
a higher revision rate and a greater incidence of radiolucent lines
than with the other articulations. We recommend that patients with
a 28 mm Metasul MoM bearing be followed carefully. Cite this article:
An ongoing prospective study to investigate failing metal-on-metal
hip prostheses was commenced at our centre in 2008. We report on
the results of the analysis of the first consecutive 126 failed
mated total hip prostheses from a single manufacturer. Analysis was carried out using highly accurate coordinate measuring
to calculate volumetric and linear rates of the articular bearing
surfaces and also the surfaces of the taper junctions. The relationship
between taper wear rates and a number of variables, including bearing
diameter and orientation of the acetabular component, was investigated.Objectives
Methods
We review the history and literature of hip resurfacing arthroplasty. Resurfacing and the science behind it continues to evolve. Recent results, particularly from the national arthroplasty registers, have spread disquiet among both surgeons and patients. A hip resurfacing arthroplasty is not a total hip replacement, but should perhaps be seen as a means of delaying it. The time when hip resurfacing is offered to a patient may be different from that for a total hip replacement. The same logic can apply to the timing of revision surgery. Consequently, the comparison of resurfacing with total hip replacement may be a false one. Nevertheless, the need for innovative solutions for young arthroplasty patients is clear. Total hip replacement can be usefully delayed in many of these patients by the use of hip resurfacing arthroplasty.
Hip resurfacing arthroplasty (HRA) is an alternative to conventional
total hip arthroplasty for patients with osteonecrosis (ON) of the
femoral head. Our aim was to report the long-term outcome of HRA,
which is not currently known. Long-term survivorship, clinical scores and radiographic results
for 82 patients (99 hips) treated with HRA for ON over a period
of 18 years were reviewed retrospectively. The mean age of the 67
men and 15 women at the time of surgery was 40.8 years (14 to 64).
Patients were resurfaced regardless of the size of the osteonecrotic
lesion.Aims
Patients and Methods
In this paper, we will consider the current role
of metal-on-metal bearings by looking at three subtypes of MoM hip
arthroplasty separately: Hip resurfacing, large head (>
36 mm) MoM
THA and MoM THA with traditional femoral head sizes.
A moderator and panel of five experts led an
interactive session in discussing five challenging and interesting patient
case presentations involving surgery of the hip. The hip pathologies
reviewed included failed open reduction internal fixation of subcapital
femoral neck fracture, bilateral hip disease, evaluation of pain
after metal-on-metal hip arthroplasty, avascular necrosis, aseptic
loosening secondary to osteolysis and polyethylene wear, and management
of ceramic femoral head fracture.