Restoration of leg length and offset is an important
goal in total hip replacement. This paper reports a calliper-based technique
to help achieve these goals by restoring the location of the centre
of the femoral head. This was validated first by using a co-ordinate
measuring machine to see how closely the calliper technique could
record and restore the centre of the femoral head when simulating
hip replacement on Sawbone femur, and secondly by using CT in patients
undergoing hip replacement. Results from the co-ordinate measuring machine showed that the
centre of the femoral head was predicted by the calliper to within
4.3 mm for offset (mean 1.6 (95% confidence interval (CI) 0.4 to
2.8)) and 2.4 mm for vertical height (mean -0.6 (95% CI -1.4 to
0.2)).
The CT scans showed that offset and vertical height were restored
to within 8 mm
(mean -1 (95% CI -2.1 to 0.6)) and -14 mm (mean 4 (95% CI 1.8 to
4.3)), respectively. Accurate assessment and restoration of the centre of the femoral
head is feasible with a calliper. It is quick, inexpensive, simple
to use and can be applied to any design of femoral component.
Recent studies have shown that modulating inflammation-related
lipid signalling after a bone fracture can accelerate healing in
animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity
during fracture healing increases cyclooxygenase-2 (COX-2) expression
in the fracture callus, accelerates chondrogenesis and decreases
healing time. In this study, we test the hypothesis that 5-LO inhibition
will increase direct osteogenesis. Bilateral, unicortical femoral defects were used in rats to measure
the effects of local 5-LO inhibition on direct osteogenesis. The
defect sites were filled with a polycaprolactone (PCL) scaffold
containing 5-LO inhibitor (A-79175) at three dose levels, scaffold
with drug carrier, or scaffold only. Drug release was assessed Objectives
Methods
We retrospectively reviewed 101 consecutive patients
with 114 femoral tumours treated by massive bone allograft at our
institution between 1986 and 2005. There were 49 females and 52
males with a mean age of 20 years (4 to 74). At a median follow-up
of 9.3 years (2 to 19.8), 36 reconstructions (31.5%) had failed.
The allograft itself failed in 27 reconstructions (24%). Mechanical complications such as delayed union, fracture and
failure of fixation were studied. The most adverse factor on the
outcome was the use of intramedullary nails, followed by post-operative
chemotherapy, resection length >
17 cm and age >
18 years at the
time of intervention. The simultaneous use of a vascularised fibular
graft to protect the allograft from mechanical complications improved
the outcome, but the use of intramedullary cementing was not as
successful. In order to improve the strength of the reconstruction and to
advance the biology of host–graft integration, we suggest avoiding
the use of intramedullary nails and titanium plates, but instead
using stainless steel plates, as these gave better results. The
use of a supplementary vascularised fibular graft should be strongly
considered in adult patients with resection >
17 cm and in those
who require post-operative chemotherapy.
Aseptic loosening of the femoral component is
an important indication for revision surgery in unicompartmental knee
replacement (UKR). A new design of femoral component with an additional
peg was introduced for the cemented Oxford UKR to increase its stability.
The purpose of this study was to compare the primary stability of
the two designs of component. Medial Oxford UKR was performed in 12 pairs of human cadaver
knees. In each pair, one knee received the single peg and one received
the twin peg design. Three dimensional micromotion and subsidence
of the component in relation to the bone was measured under cyclical
loading at flexion of 40° and 70° using an optical measuring system.
Wilcoxon matched pairs signed-rank test was performed to detect
differences between the two groups. There was no significant difference in the relative micromotion
(p = 0.791 and 0.380, respectively) and subsidence (p = 0.301 and
0.176, respectively) of the component between the two groups at
both angles of flexion. Both designs of component offered good strength
of fixation in this cadaver study. Cite this article:
Hip resurfacing has been proposed as an alternative
to traditional total hip arthroplasty in young, active patients.
Much has been learned following the introduction of metal-on-metal resurfacing
devices in the 1990s. The triad of a well-designed device, implanted
accurately, in the correct patient has never been more critical
than with these implants. Following Food and Drug Administration approval in 2006, we studied
the safety and effectiveness of one hip resurfacing device (Birmingham
Hip Resurfacing) at our hospital in a large, single-surgeon series.
We report our early to mid–term results in 1333 cases followed for
a mean of 4.3 years (2 to 5.7) using a prospective, observational
registry. The mean patient age was 53.1 years (12 to 84); 70% were
male and 91% had osteoarthritis. Complications were few, including
no dislocations, no femoral component loosening, two femoral neck
fractures (0.15%), one socket loosening (0.08%), three deep infections
(0.23%), and three cases of metallosis (0.23%). There were no destructive
pseudotumours. Overall survivorship at up to 5.7 years was 99.2%. Aseptic survivorship
in males under the age of 50 was 100%. We believe this is the largest
United States series of a single surgeon using a single resurfacing
system. Cite this article:
Impacted morsellised allografts have been used successfully to address the problem of poor bone stock in revision surgery. However, there are concerns about the transmission of pathogens, the high cost and the shortage of supply of donor bone. Bone-graft extenders, such as tricalcium phosphate (TCP) and hydroxyapatite (HA), have been developed to minimise the use of donor bone. In a human cadaver model we have evaluated the surgical and mechanical feasibility of a TCP/HA bone-graft extender during impaction grafting revision surgery. A TCP/HA allograft mix increased the risk of producing a fissure in the femur during the impaction procedure, but provided a higher initial mechanical stability when compared with bone graft alone. The implications of the use of this type of graft extender in impaction grafting revision surgery are discussed.
The reduced stability of hydroxyapatite (HA)-coated implants in osteopenic conditions is considered to be a major problem. We therefore developed a model of a boosted cementless implantation in osteopenic rats. Twelve-week-old rats were either ovariectomised (OVX) or sham-operated (SO), and after 24 weeks plain or HA-coated implants were inserted. They were treated with either a prostaglandin EP4 receptor agonist (ONO-4819) or saline for one month. The EP4 agonist considerably improved the osteoporosis in the OVX group. Ultrastructural analysis and mechanical testing showed an improvement in the implant-bone attachment in the HA-coated implants, which was further enhanced by the EP4 agonist. Although the stability of the HA-coated implants in the saline-treated OVX rats was less than in the SO normal rats, the administration of the EP4 agonist significantly compensated for this shortage. Our results showed that the osteogenic effect of the EP4 agonist augmented the osteoconductivity of HA and significantly improved the stability of the implant-bone attachment in the osteoporotic rat model.
We investigated 219 revisions of total hip replacement (THR) in 211 patients using a collarless double-taper cemented femoral component. The mean age of the patients was 72 years (30 to 90). The 137 long and 82 standard length stems were analysed separately. The mean follow-up was six years (2 to 18), and no patient was lost to follow-up. Survival of the long stems to re-revision for aseptic loosening at nine years was 98% (95% confidence interval (CI) 94 to 100), and for the standard stems was 93% (95% CI 85 to 100). At five years, one long stem was definitely loose radiologically and one standard stem was probably loose. Pre-operative femoral bone deficiency did not influence the results for the long stems, and corrective femoral osteotomy was avoided, as were significant subsidence, major stress shielding and persistent thigh pain. Because of these reliable results, cemented long collarless double-taper femoral components are recommended for routine revision THR in older patients.
Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis.Aims
Methods
Systemic antibiotics reduce infection in open
fractures. Local delivery of antibiotics can provide higher doses
to wounds without toxic systemic effects. This study investigated
the effect on infection of combining systemic with local antibiotics
via polymethylmethacrylate (PMMA) beads or gel delivery. An established Combined local and systemic antibiotics were superior to systemic
antibiotics alone at reducing the quantity of bacteria recoverable
from each group (p = 0.002 for gel; p = 0.032 for beads). There
was no difference in the bacterial counts between bead and gel delivery
(p = 0.62). These results suggest that local antibiotics augment the antimicrobial
effect of systemic antibiotics. Although no significant difference
was found between vehicles, gel delivery offers technical advantages
with its biodegradable nature, ability to conform to wound shape
and to deliver increased doses. Further study is required to see
if the gel delivery system has a clinical role. Cite this article:
Failure of fixation is a common problem in the treatment of osteoporotic fractures around the hip. The reinforcement of bone stock or of fixation of the implant may be a solution. Our study assesses the existing evidence for the use of bone substitutes in the management of these fractures in osteoporotic patients. Relevant publications were retrieved through Medline research and further scrutinised. Of 411 studies identified, 22 met the inclusion criteria, comprising 12 experimental and ten clinical reports. The clinical studies were evaluated with regard to their level of evidence. Only four were prospective and randomised. Polymethylmethacrylate and calcium-phosphate cements increased the primary stability of the implant-bone construct in all experimental and clinical studies, although there was considerable variation in the design of the studies. In randomised, controlled studies, augmentation of intracapsular fractures of the neck of the femur with calcium-phosphate cement was associated with poor long-term results. There was a lack of data on the long-term outcome for trochanteric fractures. Because there were only a few, randomised, controlled studies, there is currently poor evidence for the use of bone cement in the treatment of fractures of the hip.
Interfacial defects between the cement mantle and a hip implant may arise from constrained shrinkage of the cement or from air introduced during insertion of the stem. Shrinkage-induced interfacial porosity consists of small pores randomly located around the stem, whereas introduced interfacial gaps are large, individual and less uniformly distributed areas of stem-cement separation. Using a validated CT-based technique, we investigated the extent, morphology and distribution of interfacial gaps for two types of stem, the Charnley-Kerboul and the Lubinus SPII, and for two techniques of implantation, line-to-line and undersized. The interfacial gaps were variable and involved a mean of 6.43% (
Several bisphosphonates are now available for the treatment of osteoporosis. Porous hydroxyapatite/collagen (HA/Col) composite is an osteoconductive bone substitute which is resorbed by osteoclasts. The effects of the bisphosphonate alendronate on the formation of bone in porous HA/Col and its resorption by osteoclasts were evaluated using a rabbit model. Porous HA/Col cylinders measuring 6 mm in diameter and 8 mm in length, with a pore size of 100 μm to 500 μm and 95% porosity, were inserted into a defect produced in the lateral femoral condyles of 72 rabbits. The rabbits were divided into four groups based on the protocol of alendronate administration: the control group did not receive any alendronate, the pre group had alendronate treatment for three weeks prior to the implantation of the HA/Col, the post group had alendronate treatment following implantation until euthanasia, and the pre+post group had continuous alendronate treatment from three weeks prior to surgery until euthanasia. All rabbits were injected intravenously with either saline or alendronate (7.5 μg/kg) once a week. Each group had 18 rabbits, six in each group being killed at three, six and 12 weeks post-operatively. Alendronate administration suppressed the resorption of the implants. Additionally, the mineral densities of newly formed bone in the alendronate-treated groups were lower than those in the control group at 12 weeks post-operatively. Interestingly, the number of osteoclasts attached to the implant correlated with the extent of bone formation at three weeks. In conclusion, the systemic administration of alendronate in our rabbit model at a dose-for-weight equivalent to the clinical dose used in the treatment of osteoporosis in Japan affected the mineral density and remodelling of bone tissue in implanted porous HA/Col composites.
The role of vacuum mixing on the reduction of porosity and on the clinical performance of cemented total hip replacements remains uncertain. We have used paired femoral constructs prepared with either hand-mixed or vacuum-mixed cement in a cadaver model which simulated intra-operative conditions during cementing of the femoral component. After the cement had cured, the distribution of its porosity was determined, as was the strength of the cement-stem and cement-bone interfaces. The overall fraction of the pore area was similar for both hand-mixed and vacuum-mixed cement (hand 6%; vacuum 5.7%; paired
The October 2013 Trauma Roundup360 looks at: Radiological, electromagnetic or just leave it out altogether?: distal locking in intramedullary nailing; Internal fixation of radiation-induced pathological fractures of the femur has a high rate of failure; Obesity and trauma; Short and sweet?: antibiotics in open fractures; Extremity injuries more important than previously thought?; Cement nails tiptop for osteomyelitis; Oxygen measurements for compartment syndrome?
Deformity of the proximal femur in fibrous dysplasia
leads to deviation of the mechanical axis of the hip, which may lead
to the development of secondary osteoarthritis (OA). This study
investigated the prevalence and predisposing factors for the development
of OA in patients with fibrous dysplasia of the proximal femur.
We reviewed the records of 209 patients from our institutional database
with fibrous dysplasia of the proximal femur, investigating possible predisposing
factors including patient demographics, the extent of the coxa vara
deformity, the presence of peri-articular disease, and the overall
burden of skeletal disease. Of the 209 patients, 24 (12%) had radiological
evidence of OA in the ipsilateral hip. The prevalence was significantly
higher in patients with polyostotic fibrous dysplasia compared with
those with monostotic disease (p <
0.001). In a subgroup analysis of
patients with polyostotic disease, the extent of deformity (quantified
using the neck–shaft angle), and the presence of peri-articular
disease (whether in the head of the femur or the acetabulum) were
significant predictors of osteoarthritis (neck–shaft angle likelihood
ratio (LR) = 0.847 per 1° increase, p = 0.004; presence of lesion
in the head of the femur LR = 9.947, p = 0.027; presence of lesion
in the acetabulum LR = 11.231, p = 0.014). Our data suggest that patients with polyostotic fibrous dysplasia
have a high risk of developing secondary OA of the hips. This risk
is higher in patients with peri-articular disease, and those with
a more severe deformity of proximal femur. Cite this article:
Gender-specific total knee replacement has generated much interest recently. We reviewed 1970 Sigma knees implanted in 920 women and 592 men with a mean age of 69.7 years. At a mean follow-up of 7.3 years (minimum, five years), we found minimal differences in the outcome between genders. At the final follow-up, men had a higher overall Knee Society score and more osteolysis (3.8% vs 1.1%). However, there were no significant differences between men and women in terms of complications or improvements in knee function, pain score or range of movement. The estimated ten-year survivorship was 97% in women and 98% in men (p = 0.96). We concluded that there was little difference in outcome between the genders treated by a modern unisex design of total knee replacement in this large multicentre study.
This study investigates and defines the topographic
anatomy of the medial femoral circumflex artery (MFCA) terminal
branches supplying the femoral head (FH). Gross dissection of 14
fresh–frozen cadaveric hips was undertaken to determine the extra
and intracapsular course of the MFCA’s terminal branches. A constant
branch arising from the transverse MFCA (inferior retinacular artery;
IRA) penetrates the capsule at the level of the anteroinferior neck,
then courses obliquely within the fibrous prolongation of the capsule
wall (inferior retinacula of Weitbrecht), elevated from the neck,
to the posteroinferior femoral head–neck junction. This vessel has
a mean of five (three to nine) terminal branches, of which the majority
penetrate posteriorly. Branches from the ascending MFCA entered
the femoral capsular attachment posteriorly, running deep to the
synovium, through the neck, and terminating in two branches. The
deep MFCA penetrates the posterosuperior femoral capsular. Once
intracapsular, it divides into a mean of six (four to nine) terminal
branches running deep to the synovium, within the superior retinacula
of Weitbrecht of which 80% are posterior. Our study defines the
exact anatomical location of the vessels, arising from the MFCA
and supplying the FH. The IRA is in an elevated position from the
femoral neck and may be protected from injury during fracture of
the femoral neck. We present vascular ‘danger zones’ that may help
avoid iatrogenic vascular injury during surgical interventions about
the hip. Cite this article:
Breast cancer is generally managed surgically with adjuvant agents which include hormone therapy, chemotherapy, radiotherapy and bisphosphonate therapy. However, some of these adjuvant therapies may cause adverse events, including wound infection, neutropenia, bone marrow suppression and fever. The simultaneous presentation of osteonecrosis and osteomyelitis has not previously been described in patients with breast cancer undergoing hormone therapy and chemotherapy. We report a patient with breast cancer who developed bone infarcts in both legs as well as osteomyelitis in the right distal tibia after treatment which included a modified radical mastectomy, hormone therapy and chemotherapy. Simultaneous osteonecrosis and osteomyelitis should be considered in patients with breast cancer who are receiving chemotherapy and hormone therapy who present with severe bone pain, especially if there have been infective episodes during treatment.