Periprosthetic femoral fractures (PFF) following total hip arthroplasty
(THA) are devastating complications that are associated with functional
limitations and increased overall mortality. Although cementless
implants have been associated with an increased risk of PFF, the
precise contribution of implant geometry and design on the risk
of both intra-operative and post-operative PFF remains poorly investigated.
A systematic review was performed to aggregate all of the PFF literature
with specific attention to the femoral implant used. A systematic search strategy of several journal databases and
recent proceedings from the American Academy of Orthopaedic Surgeons
was performed. Clinical articles were included for analysis if sufficient
implant description was provided. All articles were reviewed by
two reviewers. A review of fundamental investigations of implant
load-to-failure was performed, with the intent of identifying similar
conclusions from the clinical and fundamental literature.Aims
Patients and Methods
The aim of this study was to try to elucidate the increased susceptibility of the
This study aimed to evaluate implant survival of reverse hybrid
total hip arthroplasty (THA) at medium-term follow-up. A consecutive series of 1082 THAs in 982 patients with mean follow-up
of 7.9 years (5 to 11.3) is presented. Mean age was 69.2 years (21
to 94). Of these, 194 (17.9%) were in patients under 60 years, 663
(61.3%) in female patients and 348 (32.2%) performed by a trainee.
Head size was 28 mm in 953 hips (88.1%) or 32 mm in 129 hips (11.9%).
Survival analysis was performed and subgroups compared using log
rank tests.Aims
Patients and Methods
Plating displaced proximal humeral fractures is associated with a high rate of screw perforation. Dynamization of the proximal screws might prevent these complications. The aim of this study was to develop and evaluate a new gliding screw concept for plating proximal humeral fractures biomechanically. Eight pairs of three-part humeral fractures were randomly assigned for pairwise instrumentation using either a prototype gliding plate or a standard PHILOS plate, and four pairs were fixed using the gliding plate with bone cement augmentation of its proximal screws. The specimens were cyclically tested under progressively increasing loading until perforation of a screw. Telescoping of a screw, varus tilting and screw migration were recorded using optical motion tracking.Aims
Methods
The number of patients undergoing arthroscopic surgery of the
hip has increased significantly during the past decade. It has now
become an established technique for the treatment of many intra-
and extra-articular conditions affecting the hip. However, it has
a steep learning curve and is not without the risk of complications.
The purpose of this systematic review was to determine the prevalence
of complications during and following this procedure. Preferred Reporting Items for Systematic Reviews and Meta-Analyses
guidelines were used in designing this study. Two reviewers systematically
searched the literature for complications related to arthroscopy
of the hip. The research question and eligibility criteria were
established Aims
Materials and Methods
The aim of this prospective randomised controlled trial was to
compare non-operative and operative management for acute isolated
displaced fractures of the olecranon in patients aged ≥ 75 years. Patients were randomised to either non-operative management or
operative management with either tension-band wiring or fixation
with a plate. They were reviewed at six weeks, three and six months
and one year after the injury. The primary outcome measure was the
Disabilities of the Arm, Shoulder and Hand (DASH) score at one year.Aims
Patients and Methods
This study investigates and defines the topographic
anatomy of the medial femoral circumflex artery (MFCA) terminal
branches supplying the femoral head (FH). Gross dissection of 14
fresh–frozen cadaveric hips was undertaken to determine the extra
and intracapsular course of the MFCA’s terminal branches. A constant
branch arising from the transverse MFCA (inferior retinacular artery;
IRA) penetrates the capsule at the level of the anteroinferior neck,
then courses obliquely within the fibrous prolongation of the capsule
wall (inferior retinacula of Weitbrecht), elevated from the neck,
to the posteroinferior femoral head–neck junction. This vessel has
a mean of five (three to nine) terminal branches, of which the majority
penetrate posteriorly. Branches from the ascending MFCA entered
the femoral capsular attachment posteriorly, running deep to the
synovium, through the neck, and terminating in two branches. The
deep MFCA penetrates the posterosuperior femoral capsular. Once
intracapsular, it divides into a mean of six (four to nine) terminal
branches running deep to the synovium, within the superior retinacula
of Weitbrecht of which 80% are posterior. Our study defines the
exact anatomical location of the vessels, arising from the MFCA
and supplying the FH. The IRA is in an elevated position from the
femoral neck and may be protected from injury during
Fractures of the proximal femur are a common clinical problem, and a number of orthopaedic devices are available for the treatment of such fractures. The objective of this study was to assess the rotational stability, a common failure predictor, of three different rotational control design philosophies: a screw, a helical blade and a deployable crucifix. Devices were compared in terms of the mechanical work (W) required to rotate the implant by 6° in a bone substitute material. The substitute material used was Sawbones polyurethane foam of three different densities (0.08 g/cm3, 0.16 g/cm3 and 0.24 g/cm3). Each torsion test comprised a steady ramp of 1°/minute up to an angular displacement of 10°.Objectives
Methods