Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to wear debris is characterised by the presence of lymphoid cells and most likely occurs as a result of a cell-mediated hypersensitivity reaction to cell and tissue components altered by interaction with the material components of particulate wear, particularly metal ions released from cobalt-chrome wear particles. Cite this article: Professor N. A. Athanasou. The pathobiology and pathology of aseptic implant failure.
Total knee replacement (TKR) is an effective
method of treating end-stage arthritis of the knee. It is not, however,
a procedure without risk due to a number of factors, one of which
is diabetes mellitus. The purpose of this study was to estimate
the general prevalence of diabetes in patients about to undergo
primary TKR and to determine whether diabetes mellitus adversely
affects the outcome. We conducted a systematic review and meta-analysis
according to the Meta-analysis Of Observational Studies in Epidemiology
(MOOSE) guidelines. The Odds Ratio (OR) and mean difference (MD)
were used to represent the estimate of risk of a specific outcome.
Our results showed the prevalence of diabetes mellitus among patients
undergoing TKR was 12.2%. Patients with diabetes mellitus had an increased
risk of deep infection (OR = 1.61, 95% confidence interval (CI),
1.38 to 1.88), deep vein thrombosis (in Asia, OR = 2.57, 95% CI,
1.58 to 4.20), periprosthetic fracture (OR = 1.89, 95% CI, 1.04
to 3.45), aseptic loosening (OR = 9.36, 95% CI, 4.63 to 18.90),
and a poorer Knee Society function subscore (MD = -5.86, 95% CI,
-10.27 to -1.46). Surgeons should advise patients specifically about
these increased risks when obtaining informed consent and be meticulous about
their peri-operative care. Cite this article:
Induced membrane technique is a relatively new technique in the reconstruction of large bone defects. It involves the implantation of polymethylmethacrylate (PMMA) cement in the bone defects to induce the formation of membranes after radical debridement and reconstruction of bone defects using an autologous cancellous bone graft in a span of four to eight weeks. The purpose of this study was to explore the clinical outcomes of the induced membrane technique for the treatment of post-traumatic osteomyelitis in 32 patients. A total of 32 cases of post-traumatic osteomyelitis were admitted to our department between August 2011 and October 2012. This retrospective study included 22 men and ten women, with a mean age of 40 years (19 to 70). Within this group there were 20 tibias and 12 femurs with a mean defect of 5 cm (1.5 to 12.5). Antibiotic-loaded PMMA cement was inserted into the defects after radical debridement. After approximately eight weeks, the defects were implanted with bone graft.Objectives
Methods
The most frequent cause of failure after total
hip replacement in all reported arthroplasty registries is peri-prosthetic
osteolysis. Osteolysis is an active biological process initiated
in response to wear debris. The eventual response to this process
is the activation of macrophages and loss of bone. Activation of macrophages initiates a complex biological cascade
resulting in the final common pathway of an increase in osteolytic
activity. The biological initiators, mechanisms for and regulation
of this process are beginning to be understood. This article explores current
concepts in the causes of, and underlying biological mechanism resulting
in peri-prosthetic osteolysis, reviewing the current basic science
and clinical literature surrounding the topic.
Recent studies have shown that modulating inflammation-related
lipid signalling after a bone fracture can accelerate healing in
animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity
during fracture healing increases cyclooxygenase-2 (COX-2) expression
in the fracture callus, accelerates chondrogenesis and decreases
healing time. In this study, we test the hypothesis that 5-LO inhibition
will increase direct osteogenesis. Bilateral, unicortical femoral defects were used in rats to measure
the effects of local 5-LO inhibition on direct osteogenesis. The
defect sites were filled with a polycaprolactone (PCL) scaffold
containing 5-LO inhibitor (A-79175) at three dose levels, scaffold
with drug carrier, or scaffold only. Drug release was assessed Objectives
Methods
The June 2012 Trauma Roundup360 looks at: nerve injuries of warfare; the medical complications of earthquakes; the measuring of tissue pressures in compartment syndrome; the risk of plunging through the bone when drilling; bony nonunion and negative pressure therapy; surgery for the posteriorly dislocated hip; whether to use the sliding screw or intramedullary nail for the trochanteric fracture; antegrade interlocking nailing for the distal femoral fracture; and gunshot wounds to the pancreas.
There are many guidelines that help direct the management of
patients with metal-on-metal (MOM) hip arthroplasties. We have undertaken
a study to compare the management of patients with MOM hip arthroplasties in
different countries. Six international tertiary referral orthopaedic centres were
invited to participate by organising a multi-disciplinary team (MDT)
meeting, consisting of two or more revision hip arthroplasty surgeons
and a musculoskeletal radiologist. A full clinical dataset including
history, blood tests and imaging for ten patients was sent to each
unit, for discussion and treatment planning. Differences in the
interpretation of findings, management decisions and rationale for
decisions were compared using quantitative and qualitative methods.Aims
Methods
This study was conducted to evaluate the cytokine-release kinetics of platelet-rich plasma (PRP) according to different activation protocols. Two manual preparation procedures (single-spin (SS) at 900 g for five minutes; double-spin (DS) at 900 g for five minutes and then 1500 g for 15 minutes) were performed for each of 14 healthy subjects. Both preparations were tested for platelet activation by one of three activation protocols: no activation, activation with calcium (Ca) only, or calcium with a low dose (50 IU per 1 ml PRP) of thrombin. Each preparation was divided into four aliquots and incubated for one hour, 24 hours, 72 hours, and seven days. The cytokine-release kinetics were evaluated by assessing PDGF, TGF, VEGF, FGF, IL-1, and MMP-9 concentrations with bead-based sandwich immunoassay.Objectives
Methods
An experimental rabbit model was used to test the null hypothesis,
that there is no difference in new bone formation around uncoated
titanium discs compared with coated titanium discs when implanted
into the muscles of rabbits. A total of three titanium discs with different surface and coating
(1, porous coating; 2, porous coating + Bonemaster (Biomet); and
3, porous coating + plasma-sprayed hydroxyapatite) were implanted
in 12 female rabbits. Six animals were killed after six weeks and
the remaining six were killed after 12 weeks. The implants with
surrounding tissues were embedded in methyl methacrylate and grinded
sections were stained with Masson-Goldners trichrome and examined
by light microscopy of coded sections.Objectives
Methods
Recently, the use of metal-on-metal articulations
in total hip arthroplasty (THA) has led to an increase in adverse
events owing to local soft-tissue reactions from metal ions and
wear debris. While the majority of these implants perform well,
it has been increasingly recognised that a small proportion of patients
may develop complications secondary to systemic cobalt toxicity
when these implants fail. However, distinguishing true toxicity
from benign elevations in cobalt ion levels can be challenging. The purpose of this two part series is to review the use of cobalt
alloys in THA and to highlight the following related topics of interest:
mechanisms of cobalt ion release and their measurement, definitions
of pathological cobalt ion levels, and the pathophysiology, risk factors
and treatment of cobalt toxicity. Historically, these metal-on-metal
arthroplasties are composed of a chromium-cobalt articulation. The release of cobalt is due to the mechanical and oxidative
stresses placed on the prosthetic joint. It exerts its pathological
effects through direct cellular toxicity. This manuscript will highlight the pathophysiology of cobalt
toxicity in patients with metal-on-metal hip arthroplasties. Take home message: Patients with new or evolving hip symptoms
with a prior history of THA warrant orthopaedic surgical evaluation.
Increased awareness of the range of systemic symptoms associated
with cobalt toxicity, coupled with prompt orthopaedic intervention, may
forestall the development of further complications. Cite this article:
Biochemical markers of bone-turnover have long been used to complement the radiological assessment of patients with metabolic bone disease. Their implementation in daily clinical practice has been helpful in the understanding of the pathogenesis of osteoporosis, the selection of the optimal dose and the understanding of the progression of the onset and resolution of treatment. Since they are derived from both cortical and trabecular bone, they reflect the metabolic activity of the entire skeleton rather than that of individual cells or the process of mineralisation. Quantitative changes in skeletal-turnover can be assessed easily and non-invasively by the measurement of bone-turnover markers. They are commonly subdivided into three categories; 1) bone-resorption markers, 2) osteoclast regulatory proteins and 3) bone-formation markers. Because of the rapidly accumulating new knowledge of bone matrix biochemistry, attempts have been made to use them in the interpretation and characterisation of various stages of the healing of fractures. Early knowledge of the individual progress of a fracture could help to avoid delayed or nonunion by enabling modification of the host’s biological response. The levels of bone-turnover markers vary throughout the course of fracture repair with their rates of change being dependent on the size of the fracture and the time that it will take to heal. However, their short-term biological variability, the relatively low bone specificity exerted, given that the production and destruction of collagen is not limited to bone, as well as the influence of the host’s metabolism on their concentration, produce considerable intra- and inter-individual variability in their interpretation. Despite this, the possible role of bone-turnover markers in the assessment of progression to union, the risks of delayed or nonunion and the impact of innovations to accelerate fracture healing must not be ignored.
Healing in cancellous metaphyseal bone might be different from
midshaft fracture healing due to different access to mesenchymal
stem cells, and because metaphyseal bone often heals without a cartilaginous
phase. Inflammation plays an important role in the healing of a
shaft fracture, but if metaphyseal injury is different, it is important
to clarify if the role of inflammation is also different. The biology
of fracture healing is also influenced by the degree of mechanical
stability. It is unclear if inflammation interacts with stability-related
factors. We investigated the role of inflammation in three different models:
a metaphyseal screw pull-out, a shaft fracture with unstable nailing
(IM-nail) and a stable external fixation (ExFix) model. For each,
half of the animals received dexamethasone to reduce inflammation,
and half received control injections. Mechanical and morphometric evaluation
was used.Objectives
Methods
We have evaluated the effect of the short-term administration of low therapeutic doses of modern COX-2 inhibitors on the healing of fractures. A total of 40 adult male New Zealand rabbits were divided into five groups. A mid-diaphyseal osteotomy of the right ulna was performed and either normal saline, prednisolone, indometacin, meloxicam or rofecoxib was administered for five days. Radiological, biomechanical and histomorphometric evaluation was performed at six weeks. In the group in which the highly selective anti-COX-2 agent, rofecoxib, was used the incidence of radiologically-incomplete union was similar to that in the control group. All the biomechanical parameters were statistically significantly lower in both the prednisolone and indometacin (p = 0.01) and in the meloxicam (p = 0.04) groups compared with the control group. Only the fracture load values were found to be statistically significantly lower (p = 0.05) in the rofecoxib group. Histomorphometric parameters were adversely affected in all groups with the specimens of the rofecoxib group showing the least negative effect. Our findings indicated that the short-term administration of low therapeutic doses of a highly selective COX-2 inhibitor had a minor negative effect on bone healing.
The haematoma occurring at the site of a fracture is known to play an important role in bone healing. We have recently shown the presence of progenitor cells in human fracture haematoma and demonstrated that they have the capacity for multilineage mesenchymal differentiation. There have been many studies which have shown that low-intensity pulsed ultrasound (LIPUS) stimulates the differentiation of a variety of cells, but none has investigated the effects of LIPUS on cells derived from human fracture tissue including human fracture haematoma-derived progenitor cells (HCs). In this
Several bisphosphonates are now available for the treatment of osteoporosis. Porous hydroxyapatite/collagen (HA/Col) composite is an osteoconductive bone substitute which is resorbed by osteoclasts. The effects of the bisphosphonate alendronate on the formation of bone in porous HA/Col and its resorption by osteoclasts were evaluated using a rabbit model. Porous HA/Col cylinders measuring 6 mm in diameter and 8 mm in length, with a pore size of 100 μm to 500 μm and 95% porosity, were inserted into a defect produced in the lateral femoral condyles of 72 rabbits. The rabbits were divided into four groups based on the protocol of alendronate administration: the control group did not receive any alendronate, the pre group had alendronate treatment for three weeks prior to the implantation of the HA/Col, the post group had alendronate treatment following implantation until euthanasia, and the pre+post group had continuous alendronate treatment from three weeks prior to surgery until euthanasia. All rabbits were injected intravenously with either saline or alendronate (7.5 μg/kg) once a week. Each group had 18 rabbits, six in each group being killed at three, six and 12 weeks post-operatively. Alendronate administration suppressed the resorption of the implants. Additionally, the mineral densities of newly formed bone in the alendronate-treated groups were lower than those in the control group at 12 weeks post-operatively. Interestingly, the number of osteoclasts attached to the implant correlated with the extent of bone formation at three weeks. In conclusion, the systemic administration of alendronate in our rabbit model at a dose-for-weight equivalent to the clinical dose used in the treatment of osteoporosis in Japan affected the mineral density and remodelling of bone tissue in implanted porous HA/Col composites.
We have examined the deterioration of implant fixation after withdrawal of parathyroid hormone (PTH) in rats. First, the pull-out force for stainless-steel screws in the proximal tibia was measured at different times after withdrawal. The stimulatory effect of PTH on fixation was lost after 16 days. We then studied whether bisphosphonates could block this withdrawal effect. Mechanical and histomorphometric measurements were conducted for five weeks after implantation. Subcutaneous injections were given daily. Specimens treated with either PTH or saline during the first two weeks showed no difference in the mechanical or histological results (pull-out force 76 N
The ability of mesenchymal stem cells (MSCs)
to differentiate Despite their increasing application in clinical trials, the
origin and role of MSCs in the development, repair and regeneration
of organs have remained unclear. Until recently, MSCs could only
be isolated in a process that requires culture in a laboratory;
these cells were being used for tissue engineering without understanding
their native location and function. MSCs isolated in this indirect
way have been used in clinical trials and remain the reference standard
cellular substrate for musculoskeletal engineering. The therapeutic
use of autologous MSCs is currently limited by the need for In this annotation we provide an update on the recent developments
in the understanding of the identity of MSCs within tissues and
outline how this may affect their use in orthopaedic surgery in
the future. Cite this article:
The number of arthroplasties being undertaken
is expected to grow year on year, and periprosthetic joint infections will
be an increasing socioeconomic burden. The challenge to prevent
and eradicate these infections has resulted in the emergence of
several new strategies, which are discussed in this review. Cite this article:
The August 2013 Research Roundup360 looks at: passive smoking and bone substitutes; platelet-rich plasma and osteogenesis; plantar fasciitis and platelet-rich plasma: a match made in heaven?; MRSA decolonisation decreases infection rates; gums, bisphosphonates and orthopaedics; PRAISE and partner violence; blunt impact and post-traumatic OA; and IDEAL research and implants
In this paper we propose a new classification
of neurogenic peri-articular heterotopic ossification (HO) of the
hip based on three-dimensional (3D) CT, with the aim of improving
pre-operative planning for its excision. A total of 55 patients (73 hips) with clinically significant
HO after either traumatic brain or spinal cord injury were assessed
by 3D-CT scanning, and the results compared with the intra-operative
findings. At operation, the gross pathological anatomy of the HO as identified
by 3D-CT imaging was confirmed as affecting the peri-articular hip
muscles to a greater or lesser extent. We identified seven patterns
of involvement: four basic (anterior, medial, posterior and lateral)
and three mixed (anteromedial, posterolateral and circumferential).
Excellent intra- and inter-observer agreement, with kappa values
>
0.8, confirmed the reproducibility of the classification system. We describe the different surgical approaches used to excise
the HO which were guided by the 3D-CT findings. Resection was always
successful. 3D-CT imaging, complemented in some cases by angiography, allows
the surgeon to define the 3D anatomy of the HO accurately and to
plan its surgical excision with precision. Cite this article: