We performed 52 total hip replacements in 52 patients using a cementless acetabular component combined with a circumferential osteotomy of the medial acetabular wall for the late sequelae of childhood septic arthritis of the hip. The mean age of the patients at operation was 44.5 years (22 to 66) and the mean follow-up was 7.8 years (5 to 11.8). The mean improvement in the Harris Hip Score was 29.6 points (19 to 51) at final follow-up. The mean cover of the acetabular component was 98.5% (87.8% to 100%). The medial acetabular wall was preserved with a mean thickness of 8.3 mm (1.7 to 17.4) and the mean length of abductor lever arm increased from 43.4 mm (19.1 to 62) to 54.2 mm (36.5 to 68.6). One acetabular component was revised for loosening and osteolysis 4.5 years postoperatively, and one had radiolucent lines in all acetabular zones at final review. Kaplan-Meier survival was 94.2% (95% confidence interval 85.8% to 100%) at 7.3 years, with revision or radiological loosening as an end-point when two hips were at risk. A cementless acetabular component combined with circumferential medial acetabular wall osteotomy provides favourable results for acetabular reconstruction in patients who present with late sequelae of childhood septic hip arthritis.
We examined the placement of the stem in relation to the medial tibial cortex when using total knee replacements (TKRs) with medially-offset tibial stems in Korean patients. Measurements were performed on the pre- and post-operative radiographs of 246 osteoarthritic knees replaced between January 2005 and May 2006 using the Genesis II or E-motion TKR with a medially-offset stem. Pre-operatively, we measured the distance between the mechanical axis and that of the tibial shaft and post-operatively, that between the midline of the tibial stem and the axis of the shaft. Knees were identified in which there was radiological contact between the tip of the stem and the medial tibial cortex. The mechanical axis was located medial to the axis of the shaft in 203 knees (82.5%). Post-operatively, the midline of the tibial stem was located medial to the tibial shaft axis in 196 knees (79.7%). In 16 knees (6.5%) there was radiological contact between the tibial
We evaluated the long-term fixation of 64 press-fit
We compared the performance of uncemented trabecular metal tibial components in total knee replacement with that of cemented tibial components in patients younger than 60 years over two years using radiostereophotogrammetric analysis (RSA). A total of 22 consecutive patients (mean age 53 years, 33 to 59, 26 knees) received an uncemented NexGen trabecular metal cruciate-retaining monobloc tibial component and 19 (mean 53 years, 44 to 59, 21 knees) a cemented NexGen Option cruciate-retaining modular tibial component. All the trabecular metal components migrated during the initial three months and then stabilised. The exception was external rotation, which did not stabilise until 12 months. Unlike conventional metal-backed implants which displayed a tilting migration comprising subsidence and lift-off from the tibial tray, most of the trabecular metal components showed subsidence only, probably due to the elasticity of the implant. This pattern of subsidence is regarded as being beneficial for uncemented fixation.
Clinical, haematological or economic benefits of post-operative blood salvage with autologous blood re-transfusion have yet to be clearly demonstrated for primary total hip replacement. We performed a prospective randomised study to analyse differences in postoperative haemoglobin levels and homologous blood requirements in two groups of patients undergoing primary total hip replacement. A series of 158 patients was studied. In one group two vacuum drains were used and in the other the ABTrans autologous retransfusion system. A total of 58 patients (76%) in the re-transfusion group received autologous blood. There was no significant difference in the mean post-operative haemoglobin levels in the two groups. There were, however, significantly fewer patients with post-operative haemoglobin values less than 9.0 g/dl and significantly fewer patients who required transfusion of homologous blood in the re-transfusion group. There was also a small overall cost saving in this group.
Polymethylmethacrylate remains one of the most enduring materials in orthopaedic surgery. It has a central role in the success of total joint replacement and is also used in newer techniques such as percutaneous vertebroplasty and kyphoplasty. This article describes the current uses and limitations of polymethylmethacrylate in orthopaedic surgery. It focuses on its mechanical and chemical properties and links these to its clinical performance. The behaviour of antibiotic-loaded bone cement are discussed, together with areas of research that are now shedding light upon the behaviour of this unique biomaterial.
We report the survival at five years of 144 consecutive metal-on-metal resurfacings of the hip implanted between August 1997 and May 1998. Failure was defined as revision of either the acetabular or femoral component for any reason during the study period. The survival at the end of five years was 98% overall and 99% for aseptic revisions only. The mean age of the patients at implantation was 52.1 years. Three femoral components failed during the first two years, two were infected and one fractured. A single stage revision was carried out in each case. No other revisions were performed or are impending. No patients were lost to follow-up. Four died from unrelated causes during the study period. This study confirms that hip resurfacing using a metal-on-metal bearing of known provenance can provide a solution in the medium term for the younger more active adult who requires surgical intervention for hip disease.
A complete cement mantle is important for the longevity of a total hip replacement. In the minimally-invasive direct anterior approach used at the Innsbruck University hospital, the femoral component has to be inserted into the femoral canal by an angulated movement. In a cadaver study, the quality and the extent of the cement mantle surrounding 13 Exeter femoral components implanted straight through a standard anterolateral transgluteal approach were compared with those of 13 similar femoral components implanted in an angulated fashion through a direct anterior approach. A third-generation cementing technique was used. The inner and outer contours of the cement mantles was traced from CT scans and the thickness and cross-sectional area determined. In no case was the cement mantle incomplete. The total mean thickness of the cement mantle was 3.62 mm (95% confidence interval 3.59 to 3.65). The mean thickness in the group using the minimally-invasive approach was 0.16 mm less than that in the anterolateral group. The distribution of the thickness was similar in the two groups. The mean thickness was less on the anteromedial and anterolateral aspect than on the posterior aspect of the femur. There is no evidence that the angulated introduction of Exeter femoral components in the direct anterior approach in cadavers compromises the quality, extent or thickness of the cement mantle.
The effects of the method of fixation and interface conditions on the biomechanics of the femoral component of the Birmingham hip resurfacing arthroplasty were examined using a highly detailed three-dimensional computer model of the hip. Stresses and strains in the proximal femur were compared for the natural femur and for the femur resurfaced with the Birmingham hip resurfacing. A comparison of cemented
We performed a three-year radiostereometric analysis (RSA) study of the Elite Plus femoral component on 25 patients undergoing primary total hip replacement. Additional assessments and measurements from standard radiographs were also made. Subsidence of the stem occurred at the cement-stem interface. At 36 months the subsidence of the stem centroid was a mean of 0.30 mm (0.02 to 1.28), and was continuing at a slow rate. At the same time point, internal rotation and posterior migration of the femoral head had ceased. One stem migrated excessively and additional assessments suggested that this was probably due to high patient demand. The failure rate of 4% in our study is consistent with data from arthroplasty registers but contrasts with poor results from another RSA study, and from some clinical studies. We believe that the surgical technique, particularly the use of high-viscosity cement, may have been an important factor contributing to our results.
The use of impaction bone grafting during revision arthroplasty of the hip in the presence of cortical defects has a high risk of post-operative fracture. Our laboratory study addressed the effect of extramedullary augmentation and length of femoral stem on the initial stability of the prosthesis and the risk of fracture. Cortical defects in plastic femora were repaired using either surgical mesh without extramedullary augmentation, mesh with a strut graft or mesh with a plate. After bone impaction, standard or long-stem Exeter prostheses were inserted, which were tested by cyclical loading while measuring defect strain and migration of the stem. Compared with standard stems without extramedullary augmentation, defect strains were 31% lower with longer stems, 43% lower with a plate and 50% lower with a strut graft. Combining extramedullary augmentation with a long stem showed little additional benefit (p = 0.67). The type of repair did not affect the initial stability. Our results support the use of impaction bone grafting and extramedullary augmentation of diaphyseal defects after mesh containment.
Between January 1998 and December 1998, 82 consecutive patients (86 hips) underwent total hip arthroplasty using a trabecular metal monoblock acetabular component. All patients had a clinical and radiological follow-up evaluation at six, 12 and 24 weeks, 12 months, and then annually thereafter. On the initial post-operative radiograph 25 hips had a gap between the outer surface of the component and the acetabular host bed which ranged from 1 to 5 mm. All patients were followed up clinically and radiologically for a mean of 7.3 years (7 to 7.5). The 25 hips with the 1 to 5 mm gaps were studied for component migration at two years using the Einzel-Bild-Roentgen-Analyse (EBRA) digital measurement method. At 24 weeks all the post-operative gaps were filled with bone and no acetabular component had migrated. The radiographic outcome of all 86 components showed no radiolucent lines and no evidence of lysis. No acetabular implant was revised. There were no dislocations or other complications. The bridging of the interface gaps (up to 5 mm) by the trabecular metal monoblock acetabular component indicates the strong osteoconductive, and possibly osteoinductive, properties of trabecular metal.
We compared the five- to seven-year clinical and radiological results of the metal-on-metal Birmingham hip resurfacing with a hybrid total hip arthroplasty in two groups of 54 hips, matched for gender, age, body mass index and activity level. Function was excellent in both groups, as measured by the Oxford hip score, but the Birmingham hip resurfacings had higher University of California at Los Angeles activity scores and better EuroQol quality of life scores. The total hip arthroplasties had a revision or intention-to-revise rate of 8%, and the Birmingham hip resurfacings of 6%. Both groups demonstrated impending failure on surrogate end-points. Of the total hip arthroplasties, 12% had polyethylene wear and osteolysis under observation, and 8% of Birmingham hip resurfacings showed migration of the femoral component. Polyethylene wear was present in 48% of the hybrid hips without osteolysis. Of the femoral components in the Birmingham hip resurfacing group which had not migrated, 66% had radiological changes of unknown significance.
Using a modern cementing technique, we implanted 22 stereolithographic polymeric replicas of the Charnley-Kerboul stem in 11 pairs of human cadaver femora. On one side, the replicas were cemented line-to-line with the largest broach. On the other, one-size undersized replicas were used (radial difference, 0.89 mm . sd. 0.13). CT analysis showed that the line-to-line stems without distal centralisers were at least as well aligned and centered as undersized stems with a centraliser, but were surrounded by less cement and presented more areas of thin (<
2 mm) or deficient (<
1 mm) cement. These areas were located predominantly at the corners and in the middle and distal thirds of the stem. Nevertheless, in line-to-line