This paper reviews the current literature concerning the main clinical factors which can impair the healing of fractures and makes recommendations on avoiding or minimising these in order to optimise the outcome for patients. The clinical implications are described.
We investigated the fracture-free survival of long bones stabilised by a telescopic intramedullary rod (TIMR) in patients with osteogenesis imperfecta with respect to the remodelling status of fracture or osteotomy sites and TIMR regions, in order to identify risk factors for fracture. A total of 44 femora and 28 tibiae in 25 patients with a mean age of 5.0 years (1.9 to 10.5) at presentation were studied. There were six patients with Sillence type I, five with type III, 13 with type IV and one with type V osteogenesis imperfecta. All received bisphosphonate treatment at the same stage during the mean follow-up of 7.3 years (0.5 to 18.1). The fracture-free survival was estimated at 6.2 years (95% confidence interval 5.1 to 7.3) by Kaplan-Meier analysis. More than half the fracture or osteotomy sites remained in a less-remodelled state at the latest follow-up or time of fracture. Of the 33 fractures, 29 (87.9%) occurred in long bones containing a less-remodelled site, and these fractures were located at this site. The relative fracture risk at the rod tip was significantly greater than in any other TIMR region (p <
0.001), and this was higher in bone segments having a less-remodelled site. This study shows a persistent fracture risk in TIMR-stabilised long bones, especially at less-remodelled fracture or osteotomy sites and at the rod tip.
We identified 11 women with a mean age of 74 years (65 to 81) who sustained comminuted distal radial and ulnar fractures and were treated by volar plating and slight shortening of the radius combined with a primary Sauvé-Kapandji procedure. At a mean of 46 months (16 to 58), union of distal radial fractures and arthrodesis of the distal radioulnar joint was seen in all patients. The mean shortening of the radius was 12 mm (5 to 18) compared to the contralateral side. Flexion and extension of the wrist was a mean of 54° and 50°, respectively, and the mean pronation and supination of the forearm was 82° and 86°, respectively. The final mean disabilities of the arm, shoulder and hand score was 26 points. According to the Green and O’Brien rating system, eight patients had an excellent, two a good and one a fair result. The good clinical and radiological results, and the minor complications without the need for further operations related to late ulnar-sided wrist pain, justify this procedure in the elderly patient.
Ventral screw osteosynthesis is a common surgical
method for treating fractures of the odontoid peg, but there is still
no consensus about the number and diameter of the screws to be used.
The purpose of this study was to develop a more accurate measurement
technique for the morphometry of the odontoid peg (dens axis) and
to provide a recommendation for ventral screw osteosynthesis. Images of the cervical spine of 44 Caucasian patients, taken
with a 64-line CT scanner, were evaluated using the measuring software
MIMICS. All measurements were performed by two independent observers.
Intraclass correlation coefficients were used to measure inter-rater
variability. The mean length of the odontoid peg was 39.76 mm ( The cross-section of the odontoid peg is not circular but slightly
elliptical, with a 10% greater diameter in the sagittal plane. In
the majority of cases (70.5%) the odontoid peg offers enough room
for two 3.5 mm cannulated cortical screws. Cite this article:
Failure of fixation is a common problem in the treatment of osteoporotic fractures around the hip. The reinforcement of bone stock or of fixation of the implant may be a solution. Our study assesses the existing evidence for the use of bone substitutes in the management of these fractures in osteoporotic patients. Relevant publications were retrieved through Medline research and further scrutinised. Of 411 studies identified, 22 met the inclusion criteria, comprising 12 experimental and ten clinical reports. The clinical studies were evaluated with regard to their level of evidence. Only four were prospective and randomised. Polymethylmethacrylate and calcium-phosphate cements increased the primary stability of the implant-bone construct in all experimental and clinical studies, although there was considerable variation in the design of the studies. In randomised, controlled studies, augmentation of intracapsular fractures of the neck of the femur with calcium-phosphate cement was associated with poor long-term results. There was a lack of data on the long-term outcome for trochanteric fractures. Because there were only a few, randomised, controlled studies, there is currently poor evidence for the use of bone cement in the treatment of fractures of the hip.
We present our experience of managing patients
with iatropathic brachial plexus injury after delayed fixation of
a fracture of the clavicle. It is a retrospective cohort study of
patients treated at our peripheral nerve injury unit and a single
illustrative case report. We identified 21 patients in whom a brachial
plexus injury occurred as a direct consequence of fixation of a
fracture of the clavicle between September 2000 and September 2011. The predominant injury involved the C5/C6 nerves, upper trunk,
lateral cord and the suprascapular nerve. In all patients, the injured
nerve was found to be tethered to the under surface of the clavicle
by scar tissue at the site of the fracture and was usually associated
with pathognomonic neuropathic pain and paralysis. Delayed fixation of a fracture of the clavicle, especially between
two and four weeks after injury, can result in iatropathic brachial
plexus injury. The risk can be reduced by thorough release of the
tissues from the inferior surface of the clavicle before mobilisation
of the fracture fragments. If features of nerve damage appear post-operatively
urgent specialist referral is recommended. Cite this article:
We investigated the stability of seven Schatzker type II fractures of the lateral tibial plateau treated by subchondral screws and a buttress plate followed by immediate partial weight-bearing. In order to assess the stability of the fracture, weight-bearing inducible displacements of the fracture fragments and their migration over a one-year period were measured by differentially loaded radiostereometric analysis and standard radiostereometric analysis, respectively. The mean inducible craniocaudal fracture fragment displacements measured −0.30 mm (−0.73 to 0.02) at two weeks and 0.00 mm (−0.12 to 0.15) at 52 weeks. All inducible displacements were elastic in nature under all loads at each examination during follow-up. At one year, the mean craniocaudal migration of the fracture fragments was −0.34 mm (−1.64 to 1.51). Using radiostereometric methods, this case series has shown that in the Schatzker type II fractures investigated, internal fixation with subchondral screws and a buttress plate provided adequate stability to allow immediate post-operative partial weight-bearing, without harmful consequences.
Flexible intramedullary nailing is gaining popularity as an effective method of treating long-bone fractures in children. We retrospectively reviewed the records and radiographs of 56 unstable fractures of the tibia in 54 children treated between March 1997 and May 2005. All were followed up for at least two months after the removal of the nails. Of the 56 tibial fractures, 13 were open. There were no nonunions. The mean time to clinical and radiological union was ten weeks. Complications included residual angulation of the tibia, leg-length discrepancy, deep infection and failures of fixation. All achieved an excellent functional outcome. We conclude that flexible intramedullary fixation is an easy and effective method of management of both open and closed unstable fractures of the tibia in children.
We prospectively studied 26 consecutive patients with clinically documented sensory or motor deficiency of a peripheral nerve due to trauma or entrapment using ultrasound, and in 19 cases surgical exploration of the nerves was undertaken. The ultrasonographic diagnoses were correlated with neurological examination and the surgical findings. Reliable visualisation of injured nerves on ultrasonography was achieved in all patients. Axonal swelling and hypoechogenity of the nerve was diagnosed in 15 cases, loss of continuity of a nerve bundle in 17, the formation of a neuroma of a stump in six, and partial laceration of a nerve with loss of the normal fascicular pattern in five. The ultrasonographic findings were confirmed at operation in those who had surgery. Ultrasound may be used for the evaluation of peripheral nerve injuries in the upper limb. High-resolution ultrasound can show the exact location, extent and type of lesion, yielding important information that might not be obtainable by other diagnostic aids.
Compression and absolute stability are important in the management of intra-articular fractures. We compared tension band wiring with plate fixation for the treatment of fractures of the olecranon by measuring compression within the fracture. Identical transverse fractures were created in models of the ulna. Tension band wires were applied to ten fractures and ten were fixed with Acumed plates. Compression was measured using a Tekscan force transducer within the fracture gap. Dynamic testing was carried out by reproducing cyclical contraction of the triceps of 20 N and of the brachialis of 10 N. Both methods were tested on each sample. Paired The mean compression for plating was 819 N ( During simulated movements, the mean compression was reduced in both groups, with tension band wiring at −14 N ( Pre-contoured plates provide significantly greater compression than tension bands in the treatment of transverse fractures of the olecranon, both over the whole fracture and specifically at the articular side of the fracture. In tension band wiring the overall compression was reduced and articular compression remained negligible during simulated contraction of the triceps, challenging the tension band principle.
An 81-year-old woman presented with a fracture
in the left femur. She had well-fixed bilateral hip replacements
and had received long-term bisphosphonate treatment. Prolonged bisphosphonate
use has been recently linked with atypical subtrochanteric and diaphyseal
femoral fractures. While the current definition of an atypical fracture
of the femur excludes peri-prosthetic fractures, this case suggests
that they do occur and should be considered in patients with severe
osteopenia. Union of the fracture followed cessation of bisphosphonates
and treatment with teriparatide. Thus, this case calls into question
whether prophylactic intramedullary nailing is sufficient alone
to treat early or completed atypical femoral fractures.
The floating shoulder is defined as ipsilateral fractures of the midshaft of the clavicle and the neck of the glenoid. This rare injury can be difficult to manage without a thorough understanding of the complex anatomy of the shoulder girdle. Surgical intervention needs to be considered for all of these injuries. While acceptable results can be expected with non-operative management of minimally-displaced fractures, displacement at one or both sites is best managed with surgical reduction and fixation.
Between 1998 and 2002, 37 neuropathies in 32 patients with a displaced supracondylar fracture of the humerus who were referred to a nerve injury unit were identified. There were 19 boys and 13 girls with a mean age of 7.9 years (3.6 to 11.3). A retrospective review of these injuries was performed. The ulnar nerve was injured in 19, the median nerve in ten and the radial nerve in eight cases. Fourteen neuropathies were noted at the initial presentation and 23 were diagnosed after treatment of the fracture. After referral, exploration of the nerve was planned for 13 patients. Surgery was later cancelled in three because of clinical recovery. Six patients underwent neurolysis alone. Excision of neuroma and nerve grafting were performed in four. At follow-up, 26 patients had an excellent, five a good and one a fair outcome.
A delay in establishing the diagnosis of an occult
fracture of the hip that remains unrecognised after plain radiography
can result in more complex treatment such as an arthroplasty being
required. This might be avoided by earlier diagnosis using MRI.
The aim of this study was to investigate the best MR imaging sequence
for diagnosing such fractures. From a consecutive cohort of 771
patients admitted between 2003 and 2011 with a clinically suspected
fracture of the hip, we retrospectively reviewed the MRI scans of
the 35 patients who had no evidence of a fracture on their plain
radiographs. In eight of these patients MR scanning excluded a fracture
but the remaining 27 patients had an abnormal scan: one with a fracture
of the pubic ramus, and in the other 26 a T1-weighted
coronal MRI showed a hip fracture with 100% sensitivity. T2-weighted
imaging was undertaken in 25 patients, in whom the diagnosis could
not be established with this scanning sequence alone, giving a sensitivity
of 84.0% for T2-weighted imaging. If there is a clinical suspicion of a hip fracture with normal
radiographs, T1-weighted coronal MRI is the best sequence
of images for identifying a fracture.
The use of pulsed electromagnetic fields (PEMF)
to stimulate bone growth has been recommended as an alternative to
the surgical treatment of ununited scaphoid fractures, but has never
been examined in acute fractures. We hypothesised that the use of
PEMF in acute scaphoid fractures would accelerate the time to union
by 30% in a randomised, double-blind, placebo-controlled, multicentre
trial. A total of 53 patients in three different medical centres
with a unilateral undisplaced acute scaphoid fracture were randomly
assigned to receive either treatment with PEMF (n = 24) or a placebo
(n = 29). The clinical and radiological outcomes were assessed at
four, six, nine, 12, 24 and 52 weeks. A log-rank analysis showed that neither time to clinical and
radiological union nor the functional outcome differed significantly
between the groups. The clinical assessment of union indicated that
at six weeks tenderness in the anatomic snuffbox (p = 0.03) as well
as tenderness on longitudinal compression of the scaphoid (p = 0.008) differed
significantly in favour of the placebo group. We conclude that stimulation of bone growth by PEMF has no additional
value in the conservative treatment of acute scaphoid fractures.
The purpose of this study was to determine whether
patients with a burst fracture of the thoracolumbar spine treated
by short segment pedicle screw fixation fared better clinically
and radiologically if the affected segment was fused at the same
time. A total of 50 patients were enrolled in a prospective study
and assigned to one of two groups. After the exclusion of three
patients, there were 23 patients in the fusion group and 24 in the
non-fusion group. Follow-up was at a mean of 23.9 months (18 to
30). Functional outcome was evaluated using the Greenough Low Back
Outcome Score. Neurological function was graded using the American
Spinal Injury Association Impairment Scale. Peri-operative blood transfusion requirements and duration of
surgery were significantly higher in the fusion group (p = 0.029
and p <
0.001, respectively). There were no clinical or radiological
differences in outcome between the groups (all outcomes p >
0.05).
The results of this study suggest that adjunctive fusion is unnecessary
when managing patients with a burst fracture of the thoracolumbar
spine with short segment pedicle screw fixation.
Between 2005 and 2010 ten consecutive children
with high-energy open diaphyseal tibial fractures were treated by early
reduction and application of a programmable circular external fixator.
They were all male with a mean age of 11.5 years (5.2 to 15.4),
and they were followed for a mean of 34.5 months (6 to 77). Full
weight-bearing was allowed immediately post-operatively. The mean
time from application to removal of the frame was 16 weeks (12 to
21). The mean deformity following removal of the frame was 0.15°
(0° to 1.5°) of coronal angulation, 0.2° (0° to 2°) sagittal angulation,
1.1 mm (0 to 10) coronal translation, and 0.5 mm (0 to 2) sagittal
translation. All patients achieved consolidated bony union and satisfactory
wound healing. There were no cases of delayed or nonunion, compartment
syndrome or neurovascular injury. Four patients had a mild superficial
pin site infection; all settled with a single course of oral antibiotics.
No patient had a deep infection or re-fracture following removal
of the frame. The time to union was comparable with, or better than,
other published methods of stabilisation for these injuries. The
stable fixator configuration not only facilitates management of
the accompanying soft-tissue injury but enables anatomical post-injury
alignment, which is important in view of the limited remodelling
potential of the tibia in children aged >
ten years. Where appropriate
expertise exists, we recommend this technique for the management
of high-energy open tibial fractures in children.
Previously, we showed that case-specific non-linear
finite element (FE) models are better at predicting the load to failure
of metastatic femora than experienced clinicians. In this study
we improved our FE modelling and increased the number of femora
and characteristics of the lesions. We retested the robustness of
the FE predictions and assessed why clinicians have difficulty in
estimating the load to failure of metastatic femora. A total of
20 femora with and without artificial metastases were mechanically
loaded until failure. These experiments were simulated using case-specific
FE models. Six clinicians ranked the femora on load to failure and
reported their ranking strategies. The experimental load to failure
for intact and metastatic femora was well predicted by the FE models (R2 =
0.90 and R2 = 0.93, respectively). Ranking metastatic
femora on load to failure was well performed by the FE models (τ =
0.87), but not by the clinicians (0.11 <
τ <
0.42). Both the
FE models and the clinicians allowed for the characteristics of
the lesions, but only the FE models incorporated the initial bone
strength, which is essential for accurately predicting the risk
of fracture. Accurate prediction of the risk of fracture should
be made possible for clinicians by further developing FE models.
An experimental rabbit model was used to test the null hypothesis,
that there is no difference in new bone formation around uncoated
titanium discs compared with coated titanium discs when implanted
into the muscles of rabbits. A total of three titanium discs with different surface and coating
(1, porous coating; 2, porous coating + Bonemaster (Biomet); and
3, porous coating + plasma-sprayed hydroxyapatite) were implanted
in 12 female rabbits. Six animals were killed after six weeks and
the remaining six were killed after 12 weeks. The implants with
surrounding tissues were embedded in methyl methacrylate and grinded
sections were stained with Masson-Goldners trichrome and examined
by light microscopy of coded sections.Objectives
Methods
In an osteological collection of 3100 specimens, 70 were found with unilateral clavicular fractures which were matched with 70 randomly selected normal specimens. This formed the basis of a study of the incidence of arthritis of the acromioclavicular joint and the effect of clavicular fracture on the development of arthritis in the ipsilateral acromioclavicular joint. This was graded visually on a severity scale of 0 to 3. The incidence of moderate to severe arthritis of the acromioclavicular joint in normal specimens was 77% (100 specimens). In those with a clavicular fracture, 66 of 70 (94%) had arthritis of the acromioclavicular joint, compared to 63 of 70 (90%) on the non-injured contralateral side (p = 0.35). Clavicles with shortening of 15 mm or less had no difference in the incidence of arthritis compared to those with shortening greater than 15 mm (p = 0.25). The location of the fracture had no effect on the development of arthritis.