Advertisement for orthosearch.org.uk
Results 321 - 340 of 662
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1035 - 1041
1 Sep 2019
Markel DC Bou-Akl T Rossi MD Pizzimenti N Wu B Ren W

Aims

The aim of this study was to evaluate blood metal ion levels, leucocyte profiles, and serum cytokines in patients with a total hip arthroplasty (THA) involving modular dual-mobility components.

Patients and Methods

A total of 39 patients were recruited, with clinical follow-up of up to two years. Outcome was assessed using the Harris Hip Score (HHS, the 12-Item Short-Form Health Survey (SF-12), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and a visual analogue scale (VAS) for pain. Blood concentrations of cobalt (Co), chromium (Cr), and serum cytokines were measured. Subpopulations of leucocytes were analyzed by flow cytometry.


Bone & Joint Research
Vol. 7, Issue 5 | Pages 362 - 372
1 May 2018
Ueda Y Inui A Mifune Y Sakata R Muto T Harada Y Takase F Kataoka T Kokubu T Kuroda R

Objectives

The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy.

Methods

Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 179 - 186
1 Feb 2018
Wu T Zhang J Wang B Sun Y Liu Y Li G

Objectives

As one of the heat-stable enterotoxins, Staphylococcal enterotoxin C2 (SEC2) is synthesized by Staphylococcus aureus, which has been proved to inhibit the growth of tumour cells, and is used as an antitumour agent in cancer immunotherapy. Although SEC2 has been reported to promote osteogenic differentiation of human mesenchymal stem cells (MSCs), the in vivo function of SCE2 in animal model remains elusive. The aim of this study was to further elucidate the in vivo effect of SCE2 on fracture healing.

Materials and Methods

Rat MSCs were used to test the effects of SEC2 on their proliferation and osteogenic differentiation potentials. A rat femoral fracture model was used to examine the effect of local administration of SEC2 on fracture healing using radiographic analyses, micro-CT analyses, biomechanical testing, and histological analyses.


The Journal of Bone & Joint Surgery British Volume
Vol. 42-B, Issue 3 | Pages 606 - 625
1 Aug 1960
Storey E

When large daily doses of vitamin D were administered to rats endochondral growth was inhibited and bone resorption occurred; later in the process uncalcified matrix (osteoid) like that seen in rickets formed on trabecular margins. When vitamin D was given only for a short period and then discontinued, little resorption of bone was seen during the withdrawal period and wide seams of osteoid material appeared which eventually calcified in an irregular manner. When normal endochondral growth was resumed a wide transverse band of dense bone with enclosed cartilaginous cores was left in the marrow cavity. If, after a few days, a second large dose of the vitamin was given resorption again occurred and calcification of osteoid material was accelerated, the first microscopic sign being a dense, wide, granular, deeply staining line at the junction of the bone and new osteoid. After a second withdrawal period a second layer of osteoid formed; eventually another transverse band appeared in the metaphysis. If this hypervitaminosis D cycle (+4 -12) was continued rats continued to form new bone with relatively little remodelling, so that after three such cycles bones became dense and hard. Histological study showed that little marrow cavity remained in either skull, vertebrae or epiphyses and a dense mass of bone enclosing cartilage cores filled the metaphysial part of the long bones. In addition, ankylosis ofteeth, calcification of spinal ligaments and widespread metastatic calcification were present. When hypervitaminosis D cycles (+1 -12, +1 -21) were adjusted to produce minimal resorptive changes a wide range of bone change was observed. This varied from uniform dense metaphysial bone containing abnormal cartilage matrix arranged in longitudinal striations, dense transverse bands parallel to the epiphysial cartilage, to remnants of dense trabeculae extending into the marrow cavity. Bone changes in osteopetrosis structurally closely resembled the induced bone changes in the rat. It is concluded that an important mechanism in the production of osteopetrosis is an accentuated rhythm of bone change like that shown experimentally to be produced in these animals. It is emphasised that these changes are but part of a range of bone disorders associated with abnormalities of cycles of resorption and deposition of bone, the type of change differing with the nature of the cycles


Bone & Joint Research
Vol. 7, Issue 3 | Pages 252 - 262
1 Mar 2018
Nishida K Matsushita T Takayama K Tanaka T Miyaji N Ibaraki K Araki D Kanzaki N Matsumoto T Kuroda R

Objectives

This study aimed to examine the effects of SRT1720, a potent SIRT1 activator, on osteoarthritis (OA) progression using an experimental OA model.

Methods

Osteoarthritis was surgically induced by destabilization of the medial meniscus in eight-week-old C57BL/6 male mice. SRT1720 was administered intraperitoneally twice a week after surgery. Osteoarthritis progression was evaluated histologically using the Osteoarthritis Research Society International (OARSI) score at four, eight, 12 and 16 weeks. The expression of SIRT1, matrix metalloproteinase 13 (MMP-13), a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), cleaved caspase-3, PARP p85, and acetylated nuclear factor (NF)-κB p65 in cartilage was examined by immunohistochemistry. Synovitis was also evaluated histologically. Primary mouse epiphyseal chondrocytes were treated with SRT1720 in the presence or absence of interleukin 1 beta (IL-1β), and gene expression changes were examined by real-time polymerase chain reaction (PCR).


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 404 - 412
1 Mar 2018
Parker JD Lim KS Kieser DC Woodfield TBF Hooper GJ

Aims

The intra-articular administration of tranexamic acid (TXA) has been shown to be effective in reducing blood loss in unicompartmental knee arthroplasty and anterior cruciate reconstruction. The effects on human articular cartilage, however, remains unknown. Our aim, in this study, was to investigate any detrimental effect of TXA on chondrocytes, and to establish if there was a safe dose for its use in clinical practice. The hypothesis was that TXA would cause a dose-dependent damage to human articular cartilage.

Materials and Methods

The cellular morphology, adhesion, metabolic activity, and viability of human chondrocytes when increasing the concentration (0 mg/ml to 40 mg/ml) and length of exposure to TXA (0 to 12 hours) were analyzed in a 2D model. This was then repeated, excluding cellular adhesion, in a 3D model and confirmed in viable samples of articular cartilage.


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 882 - 890
1 Jul 2018
Bertrand J Delfosse D Mai V Awiszus F Harnisch K Lohmann CH

Aims

Early evidence has emerged suggesting that ceramic-on-ceramic articulations induce a different tissue reaction to ceramic-on-polyethylene and metal-on-metal bearings. Therefore, the aim of this study was to investigate the tissue reaction and cellular response to ceramic total hip arthroplasty (THA) materials in vitro, as well as the tissue reaction in capsular tissue after revision surgery of ceramic-on-ceramic THAs.

Patients and Methods

We investigated tissue collected at revision surgery from nine ceramic-on-ceramic articulations. we compared our findings with tissue obtained from five metal-on-metal THA revisions, four ceramic-on-polyethylene THAs, and four primary osteoarthritis synovial membranes. The latter were analyzed to assess the amount of tissue fibrosis that might have been present at the time of implantation to enable evaluation, in relation to implantation time, of any subsequent response in the tissues.


Bone & Joint Research
Vol. 7, Issue 5 | Pages 357 - 361
1 May 2018
Shin T Lim D Kim YS Kim SC Jo WL Lim YW

Objectives

Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the in vitro biological response with a titanium plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface coated with titanium using direct metal fabrication (DMF) with 3D printing technologies.

Methods

The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and morphology of the surfaces. Biological and morphological responses to human osteoblast cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, actin filaments, and RUNX2 gene expression.


The Journal of Bone & Joint Surgery British Volume
Vol. 48-B, Issue 3 | Pages 532 - 566
1 Aug 1966
Burwell RG

1. The present study is an attempt to analyse and apportion significance to the role of inductive mechanisms in bone transplantation. 2. The experimental model used in the present work is that of the composite homograftautograft of cancellous bone previously described (Burwell 1964a). 3. Iliac bone was removed from hooded rats and washed free from its marrow. The bone was then treated by various physical and chemical methods (some of which have been used by other workers to prepare bank bone), namely freezing (-20 degrees Centigrade, -79 degrees Centigrade, -196 degrees Centigrade); freeze-drying (without sterilisation, sterilisation with high energy radiation, sterilisation with ß-propiolactone); decalcification (with E.D.T.A.); irradiation (in the frozen state at a dose of 4 million rads); boiling in water; immersion in merthiolate solution; extraction of organic components with ethylenediamine: and calcining at 660 degrees Centigrade. The treated bone was then impregnated with fresh autologous marrow procured from the femoral shaft of the Wistar rat into which the treated composite graft was to be implanted. The grafts were inserted intramuscularly and removed for study after two, six and twelve weeks. 4. After fixation, serial sectioning and staining, each graft was examined microscopically, and the proportion of new bone/grafted bone scored using an arbitrary scale (0-4). The mean score (and the standard error of the mean score) was then plotted for each treated composite graft and also for several types of fresh cancellous bone grafts. 5. It was found (Fig. 2) that the various treated composite grafts formed a spectrum of bone-forming capacities–the maximum scores being attained by the frozen and freeze-dried composite grafts, the lowest scores by the "deproteinised" composite grafts. 6. The reasons for these differences are discussed. It is concluded that cancellous bone, after transplantation, has the property to induce and promote osteogenesis in marrow; moreover, that this property is contained in the organic components of bone. 7. From the standpoint of inductive mechanisms, cancellous bone treated by freezing or freeze-drying seems to be the most suitable devitalised bone for grafting purposes; bone which has been boiled or merthiolated less suitable; and "deproteinised" bone the least suitable. 8. Freeze-dried bone sterilised physically (by high energy radiation) or chemically (by ß-propiolactone) did not form significantly less new bone than did freeze-dried bone which had not been sterilised. 9. Remodelling mechanisms in bone transplantation are briefly discussed and attention drawn to the deficiencies of present knowledge. The quantitative studies of other workers have indicated that freeze-dried bone may be more rapidly remodelled than is frozen bone. 10. The importance of fresh red marrow in promoting osteogenesis in bone transplantation and in the healing of certain fractures, is emphasised. It seems likely that the interrelationship of bone and marrow revealed by experiment has wider significance not only in health and in response to injury but also in causation of certain idiopathic bone disorders


Bone & Joint Research
Vol. 7, Issue 3 | Pages 232 - 243
1 Mar 2018
Winkler T Sass FA Duda GN Schmidt-Bleek K

Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration.

Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018;7:232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 187 - 195
1 Feb 2018
Ziebart J Fan S Schulze C Kämmerer PW Bader R Jonitz-Heincke A

Objectives

Enhanced micromotions between the implant and surrounding bone can impair osseointegration, resulting in fibrous encapsulation and aseptic loosening of the implant. Since the effect of micromotions on human bone cells is sparsely investigated, an in vitro system, which allows application of micromotions on bone cells and subsequent investigation of bone cell activity, was developed.

Methods

Micromotions ranging from 25 µm to 100 µm were applied as sine or triangle signal with 1 Hz frequency to human osteoblasts seeded on collagen scaffolds. Micromotions were applied for six hours per day over three days. During the micromotions, a static pressure of 527 Pa was exerted on the cells by Ti6Al4V cylinders. Osteoblasts loaded with Ti6Al4V cylinders and unloaded osteoblasts without micromotions served as controls. Subsequently, cell viability, expression of the osteogenic markers collagen type I, alkaline phosphatase, and osteocalcin, as well as gene expression of osteoprotegerin, receptor activator of NF-κB ligand, matrix metalloproteinase-1, and tissue inhibitor of metalloproteinase-1, were investigated.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 489 - 498
1 Aug 2017
Mifuji K Ishikawa M Kamei N Tanaka R Arita K Mizuno H Asahara T Adachi N Ochi M

Objectives

The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing.

Methods

Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium in vitro. In order to evaluate the therapeutic potential of QQMNCs, cells were transplanted into an immunodeficient rat femur nonunion model. The rats were randomised into three groups: control; PBMNCs; and QQMNCs. The fracture healing was evaluated radiographically and histologically.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 46 - 57
1 Jan 2018
Zhou J Zhou XG Wang JW Zhou H Dong J

Objective

In the present study, we aimed to assess whether gelatin/β-tricalcium phosphate (β-TCP) composite porous scaffolds could be used as a local controlled release system for vancomycin. We also investigated the efficiency of the scaffolds in eliminating infections and repairing osteomyelitis defects in rabbits.

Methods

The gelatin scaffolds containing differing amounts of of β-TCP (0%, 10%, 30% and 50%) were prepared for controlled release of vancomycin and were labelled G-TCP0, G-TCP1, G-TCP3 and G-TCP5, respectively. The Kirby-Bauer method was used to examine the release profile. Chronic osteomyelitis models of rabbits were established. After thorough debridement, the osteomyelitis defects were implanted with the scaffolds. Radiographs and histological examinations were carried out to investigate the efficiency of eliminating infections and repairing bone defects.


Bone & Joint Research
Vol. 6, Issue 7 | Pages 414 - 422
1 Jul 2017
Phetfong J Tawonsawatruk T Seenprachawong K Srisarin A Isarankura-Na-Ayudhya C Supokawej A

Objectives

Adipose-derived mesenchymal stem cells (ADMSCs) are a promising strategy for orthopaedic applications, particularly in bone repair. Ex vivo expansion of ADMSCs is required to obtain sufficient cell numbers. Xenogenic supplements should be avoided in order to minimise the risk of infections and immunological reactions. Human platelet lysate and human plasma may be an excellent material source for ADMSC expansion. In the present study, use of blood products after their recommended transfusion date to prepare human platelet lysate (HPL) and human plasma (Hplasma) was evaluated for in vitro culture expansion and osteogenesis of ADMSCs.

Methods

Human ADMSCs were cultured in medium supplemented with HPL, Hplasma and a combination of HPL and Hplasma (HPL+Hplasma). Characteristics of these ADMSCs, including osteogenesis, were evaluated in comparison with those cultured in fetal bovine serum (FBS).


Bone & Joint Research
Vol. 6, Issue 7 | Pages 399 - 404
1 Jul 2017
Sun X Liu W Cheng G Qu X Bi H Cao Z Yu Q

Objectives

The injured anterior cruciate ligament (ACL) is thought to exhibit an impaired healing response, and attempts at surgical repair have not been successful. Connective tissue growth factor (CTGF) is reported to be associated with wound healing, probably through transforming growth factor beta 1 (TGF-β1).

Methods

A rabbit ACL injury model was used to study the effect of CTGF on ligament recovery. Quantitative real-time PCR (qRT-PCR) was performed for detection of changes in RNA levels of TGF-β1, type 1 collagen (COL1), type 2 collagen (COL2), SRY-related high mobility group-box gene9 (SOX9), tissue inhibitor of metalloproteinase-1 (TIMP-1) and matrix metallopeptidase 13 (MMP-13). Expression of related proteins was detected by Western blotting.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 277 - 283
1 May 2017
Yoshikawa M Nakasa T Ishikawa M Adachi N Ochi M

Objectives

Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine.

Methods

Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs).


Bone & Joint Research
Vol. 6, Issue 3 | Pages 123 - 131
1 Mar 2017
Sasaki T Akagi R Akatsu Y Fukawa T Hoshi H Yamamoto Y Enomoto T Sato Y Nakagawa R Takahashi K Yamaguchi S Sasho T

Objectives

The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model.

Methods

MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium.

A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically.


Bone & Joint Research
Vol. 6, Issue 6 | Pages 358 - 365
1 Jun 2017
Sanghani-Kerai A Coathup M Samazideh S Kalia P Silvio LD Idowu B Blunn G

Objectives

Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration.

Methods

MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts.


Bone & Joint 360
Vol. 7, Issue 2 | Pages 38 - 39
1 Apr 2018


Bone & Joint Research
Vol. 7, Issue 6 | Pages 406 - 413
1 Jun 2018
Shabestari M Kise NJ Landin MA Sesseng S Hellund JC Reseland JE Eriksen EF Haugen IK

Objectives

Little is known about tissue changes underlying bone marrow lesions (BMLs) in non-weight-bearing joints with osteoarthritis (OA). Our aim was to characterize BMLs in OA of the hand using dynamic histomorphometry. We therefore quantified bone turnover and angiogenesis in subchondral bone at the base of the thumb, and compared the findings with control bone from hip OA.

Methods

Patients with OA at the base of the thumb, or the hip, underwent preoperative MRI to assess BMLs, and tetracycline labelling to determine bone turnover. Three groups were compared: trapezium bones removed by trapeziectomy from patients with thumb base OA (n = 20); femoral heads with (n = 24); and those without (n = 9) BMLs obtained from patients with hip OA who underwent total hip arthroplasty.