Traumatic brachial plexus injury causes severe functional impairment
of the arm. Elbow flexion is often affected. Nerve surgery or tendon
transfers provide the only means to obtain improved elbow flexion.
Unfortunately, the functionality of the arm often remains insufficient.
Stem cell therapy could potentially improve muscle strength and
avoid muscle-tendon transfer. This pilot study assesses the safety
and regenerative potential of autologous bone marrow-derived mononuclear
cell injection in partially denervated biceps. Nine brachial plexus patients with insufficient elbow flexion
(i.e., partial denervation) received intramuscular escalating doses
of autologous bone marrow-derived mononuclear cells, combined with
tendon transfers. Effect parameters included biceps biopsies, motor
unit analysis on needle electromyography and computerised muscle tomography,
before and after cell therapy.Objectives
Methods
We hypothesised that cells obtained via a Reamer–Irrigator–Aspirator
(RIA) system retain substantial osteogenic potential and are at
least equivalent to graft harvested from the iliac crest. Graft
was harvested using the RIA in 25 patients (mean age 37.6 years
(18 to 68)) and from the iliac crest in 21 patients (mean age 44.6
years (24 to 78)), after which ≥ 1 g of bony particulate graft material
was processed from each. Initial cell viability was assessed using Trypan
blue exclusion, and initial fluorescence-activated cell sorting
(FACS) analysis for cell lineage was performed. After culturing
the cells, repeat FACS analysis for cell lineage was performed and
enzyme-linked immunosorbent assay (ELISA) for osteocalcin, and Alizarin
red staining to determine osteogenic potential. Cells obtained via
RIA or from the iliac crest were viable and matured into mesenchymal
stem cells, as shown by staining for the specific mesenchymal antigens
CD90 and CD105. For samples from both RIA and the iliac crest there
was a statistically significant increase in bone production (both
p <
0.001), as demonstrated by osteocalcin production after induction. Medullary autograft cells harvested using RIA are viable and
osteogenic. Cell viability and osteogenic potential were similar
between bone grafts obtained from both the RIA system and the iliac
crest. Cite this article:
The June 2013 Foot &
Ankle Roundup360 looks at: soft-tissue pain following arthroplasty; pigmented villonodular synovitis of the foot and ankle; ankles, allograft and arthritis; open calcaneal fracture; osteochondral lesions in the longer term; severe infections in diabetic feet; absorbable first ray fixation; and showering after foot surgery.
Despite advances in the prevention and treatment of osteoporotic fractures, their prevalence continues to increase. Their operative treatment remains a challenge for the surgeon, often with unpredictable outcomes. This review highlights the current aspects of management of these fractures and focuses on advances in implant design and surgical technique.
One commonly used rat fracture model for bone and mineral research
is a closed mid-shaft femur fracture as described by Bonnarens in
1984. Initially, this model was believed to create very reproducible
fractures. However, there have been frequent reports of comminution
and varying rates of complication. Given the importance of precise
anticipation of those characteristics in laboratory research, we
aimed to precisely estimate the rate of comminution, its importance and
its effect on the amount of soft callus created. Furthermore, we
aimed to precisely report the rate of complications such as death
and infection. We tested a rat model of femoral fracture on 84 rats based on
Bonnarens’ original description. We used a proximal approach with
trochanterotomy to insert the pin, a drop tower to create the fracture
and a high-resolution fluoroscopic imager to detect the comminution.
We weighed the soft callus on day seven and compared the soft callus
parameters with the comminution status.Objectives
Methods
This article provides an overview of the role of genomics in sarcomas and describes how new methods of analysis and comparative screening have provided the potential to progress understanding and treatment of sarcoma. This article reviews genomic techniques, the evolution of the use of genomics in cancer, the current state of genomic analysis, and also provides an overview of the medical, social and economic implications of recent genomic advances.
The osteoinductive properties of demineralised
bone matrix have been demonstrated in animal studies. However, its therapeutic
efficacy has yet to be proven in humans. The clinical properties
of AlloMatrix, an injectable calcium-based demineralised bone matrix
allograft, were studied in a prospective randomised study of 50
patients with an isolated unstable distal radial fracture treated
by reduction and Kirschner (K-) wire fixation. A total of 24 patients
were randomised to the graft group (13 men and 11 women, mean age
42.3 years (20 to 62)) and 26 to the no graft group (8 men and 18
women, mean age 45.0 years (17 to 69)). At one, three, six and nine weeks, and six and 12 months post-operatively,
patients underwent radiological evaluation, assessments for range
of movement, grip and pinch strength, and also completed the Disabilities
of Arm, Shoulder and Hand questionnaire. At one and six weeks and
one year post-operatively, bone mineral density evaluations of both
wrists were performed. No significant difference in wrist function and speed of recovery,
rate of union, complications or bone mineral density was found between
the two groups. The operating time was significantly higher in the
graft group (p = 0.004). Radiologically, the reduction parameters
remained similar in the two groups and all AlloMatrix extraosseous leakages
disappeared after nine weeks. This prospective randomised controlled trial did not demonstrate
a beneficial effect of AlloMatrix demineralised bone matrix in the
treatment of this category of distal radial fractures treated by
K-wire fixation. Cite this article:
Fibrin glue, also known as fibrin sealant, is now established as a haemostatic agent in surgery, but its role in orthopaedic surgery is neither well known nor clearly defined. Although it was originally used over 100 years ago, concerns about transmission of disease meant that it fell from favour. It is also available as a slow-release drug delivery system and as a substrate for cellular growth and tissue engineering. Consequently, it has the potential to be used in a number of ways in orthopaedic surgery. The purpose of this review is to address its use in surgery of the knee in which it appears to offer great promise.
This study was performed to determine whether
pure cancellous bone graft and Kirschner (K-) wire fixation were sufficient
to achieve bony union and restore alignment in scaphoid nonunion.
A total of 65 patients who underwent cancellous bone graft and K-wire
fixation were included in this study. The series included 61 men
and four women with a mean age of 34 years (15 to 72) and mean delay
to surgery of 28.7 months (3 to 240). The patients were divided
into an unstable group (A) and stable group (B) depending on the
pre-operative radiographs. Unstable nonunion was defined as a lateral
intrascaphoid angle >
45°, or a radiolunate angle >
10°. There were
34 cases in group A and 31 cases in group B. Bony union was achieved
in 30 patients (88.2%) in group A, and in 26 (83.9%) in group B
(p = 0.439). Comparison of the post-operative radiographs between
the two groups showed no significant differences in lateral intrascaphoid
angle (p = 0.657) and scaphoid length
(p = 0.670) and height (p = 0.193). The radiolunate angle was significantly
different
(p = 0.020) but the mean value in both groups was <
10°. Comparison
of the dorsiflexion and palmar flexion of movement of the wrist
and the mean Mayo wrist score at the final clinical visit in each
group showed no significant difference (p = 0.190, p = 0.587 and
p = 0.265, respectively). Cancellous bone graft and K-wire fixation
were effective in the treatment of stable and unstable scaphoid
nonunion. Cite this article:
We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a tricalcium phosphate block, immersed either in saline or a rhBMP-2 solution, was implanted. These implants were removed at three and 21 days after the operation and examined histologically, histomorphometrically and immunohistochemically. Bone formation was seen in all implants in rhBMP-2-immersed, whereas in those immersed in saline the process was minimal, irrespective of drilling of the femoral canals. Bone mineralisation was somewhat greater in the absence of drilling with a mean mineralised volume to mean total volume of 18.2% ( Our findings suggest that osteoinductive signalling is an early event in the formation of ectopic bone. If applicable to man the results indicate that careful tissue handling is more important than the prevention of the dissemination of bone cells in order to avoid heterotopic ossification.
The April 2013 Knee Roundup360 looks at: graft tension and outcome; chondrocytes at the midterm; pre-operative deformity and failure; the designer effect; whether chondroitin sulphate really does work; whether ACL reconstruction is really required; analgesia after TKR; and degenerative meniscus.
We evaluated the efficacy of Cite this article:
Successful healing of a nine-year tibial nonunion resistant to six previous surgical procedures was achieved by tissue engineering. We used autologous bone marrow stromal cells (BMSCs) expanded to 5 × 106 cells after three weeks’ tissue culture. Calcium sulphate (CaSO4) in pellet form was combined with these cells at operation. The nonunion was clinically and radiologically healed two months after implantation. This is the description of on healing of a long-standing tibial nonunion by tissue engineering. The successful combination of BMSCs and CaSO4 has not to our knowledge been reported in a clinical setting.
Periosteum is important for bone homoeostasis
through the release of bone morphogenetic proteins (BMPs) and their
effect on osteoprogenitor cells. Smoking has an adverse effect on
fracture healing and bone regeneration. The aim of this study was
to evaluate the effect of smoking on the expression of the BMPs
of human periosteum. Real-time polymerase chain reaction was performed
for BMP-2,-4,-6,-7 gene expression in periosteal samples obtained from
45 fractured bones (19 smokers, 26 non-smokers) and 60 non-fractured
bones (21 smokers, 39 non-smokers). A hierarchical model of BMP
gene expression (BMP-2 >
BMP-6 >
BMP-4 >
BMP-7) was demonstrated
in all samples. When smokers and non-smokers were compared, a remarkable
reduction in the gene expression of BMP-2, -4 and -6 was noticed
in smokers. The comparison of fracture and non-fracture groups demonstrated
a higher gene expression of BMP-2, -4 and -7 in the non-fracture
samples. Within the subgroups (fracture and non-fracture), BMP gene
expression in smokers was either lower but without statistical significance
in the majority of BMPs, or similar to that in non-smokers with
regard to BMP-4 in fracture and BMP-7 in non-fracture samples. In
smokers, BMP gene expression of human periosteum was reduced, demonstrating
the effect of smoking at the molecular level by reduction of mRNA
transcription of periosteal BMPs. Among the BMPs studied, BMP-2
gene expression was significantly
Heterotopic ossification (HO) is perhaps the
single most significant obstacle to independence, functional mobility, and
return to duty for combat-injured veterans of Operation Enduring
Freedom and Operation Iraqi Freedom. Recent research into the cause(s)
of HO has been driven by a markedly higher prevalence seen in these
wounded warriors than encountered in previous wars or following
civilian trauma. To that end, research in both civilian and military
laboratories continues to shed light onto the complex mechanisms
behind HO formation, including systemic and wound specific factors,
cell lineage, and neurogenic inflammation. Of particular interest,
non-invasive