We describe our technique and rationale using
hybrid fixation for primary total hip arthroplasty (THA) at the Hospital
for Special Surgery. Modern uncemented acetabular components have
few screw holes, or no holes, polished inner surfaces, improved
locking mechanisms, and maximised thickness and shell-liner conformity. Uncemented
sockets can be combined with highly cross-linked polyethylene liners,
which have demonstrated very low wear and osteolysis rates after
ten to 15 years of implantation. The results of cement fixation
with a smooth or polished surface finished stem have been excellent,
virtually eliminating complications seen with cementless fixation
like peri-operative femoral fractures and thigh pain. Although mid-term
results of modern cementless stems are encouraging, the long-term
data do not show reduced revision rates for cementless stems compared
with cemented smooth stems. In this paper we review the conduct
of a hybrid THA, with emphasis on pre-operative planning, surgical
technique, hypotensive epidural anaesthesia, and intra-operative
physiology. Cite this article:
Initial stability of tibial trays is crucial for long-term success of total knee arthroplasty (TKA) in both primary and revision settings. Rotating platform (RP) designs reduce torque transfer at the tibiofemoral interface. We asked if this reduced torque transfer in RP designs resulted in subsequently reduced micromotion at the cemented fixation interface between the prosthesis component and the adjacent bone. Composite tibias were implanted with fixed and RP primary and revision tibial trays and biomechanically tested under up to 2.5 kN of axial compression and 10° of external femoral component rotation. Relative micromotion between the implanted tibial tray and the neighbouring bone was quantified using high-precision digital image correlation techniques.Objectives
Methods
We reviewed 123 second-generation uncemented total hip replacements performed on 115 patients by a single surgeon between 1993 and 1994. The acetabular component used in all cases was a fully porous-coated threaded hemispheric titanium shell (T-Tap ST) with a calcium ion stearate-free, isostatically compression-moulded polyethylene liner. The titanium femoral component used was a Taperloc with a reduced distal stem. No patient was lost to follow-up. Complete clinical and radiological follow-up was obtained for all 123 hips at a mean of 14 years (12 to 16). One femoral component was revised after a fracture, and three acetabular components for aseptic loosening. No additional femoral or acetabular components were judged loose by radiological criteria. Mild proximal femoral osteolysis was identified in two hips and minor acetabular osteolysis was present in four. The mean rate of penetration of the femoral head was 0.036 mm/year (0.000 to 0.227). These findings suggest that refinements in component design may be associated with excellent long-term fixation in cementless primary total hip replacement.
This randomised trial evaluated the outcome of
a single design of unicompartmental arthroplasty of the knee (UKA) with
either a cemented all-polyethylene or a metal-backed modular tibial
component. A total of 63 knees in 45 patients (17 male, 28 female)
were included, 27 in the all-polyethylene group and 36 in the metal-backed
group. The mean age was 57.9 years (39.6 to 76.9). At a mean follow-up
of 6.4 years (5 to 9.9), 11 all-polyethylene components (41%) were
revised (at a mean of 5.8 years; 1.4 to 8.0) post-operatively and
two metal-backed components were revised (at one and five years).
One revision in both groups was for unexplained pain, one in the
metal-backed group was for progression of osteoarthritis. The others
in the all-polyethylene group were for aseptic loosening. The survivorship
at seven years calculated by the Kaplan–Meier method for the all-polyethylene
group was 56.5% (95% CI 31.9 to 75.2, number at risk 7) and for
the metal-backed group was 93.8% (95% CI 77.3 to 98.4, number at
risk 16) This difference was statistically significant (p <
 0.001).
At the most recent follow-up, significantly better mean Western
Ontario and McMaster Universities Arthritis Index Scores were found
in the all-polyethylene group (13.4 This randomised study demonstrates that all-polyethylene components
in this design of fixed bearing UKA had unsatisfactory results with
significantly higher rates of failure before ten years compared
with the metal-back components. Cite this article:
We analysed at a mean follow-up of 7.25 years the clinical and radiological outcome of 117 patients (125 knees) who had undergone a primary, cemented, modular Freeman-Samuelson total knee replacement. While the tibial and femoral components were cemented, the patellar component was uncemented. A surface-cementing technique was used to secure the tibial components. A total of 82 knees was available for radiological assessment. Radiolucent lines were seen in 41 knees (50%) and osteolytic lesions were seen in 13 knees (16%). Asymptomatic, rotational loosening of the patellar implant was seen in four patients and osteolysis was more common in patients with a patellar resurfacing. Functional outcome scores were available for 41 patients (41 knees, 35%) and the mean Western Ontario McMasters Universities score was 77.5 (
At least four ways have been described to determine
femoral component rotation, and three ways to determine tibial component
rotation in total knee replacement (TKR). Each method has its advocates
and each has an influence on knee kinematics and the ultimate short
and long term success of TKR. Of the four femoral component methods,
the author prefers rotating the femoral component in flexion to
that amount that establishes a stable symmetrical flexion gap. This
judgement is made after the soft tissues of the knee have been balanced
in extension. Of the three tibial component methods, the author prefers rotating
the tibial component into congruency with the established femoral
component rotation with the knee is in extension. This yields a
rotationally congruent articulation during weight-bearing and should
minimise the torsional forces being transferred through a conforming tibial
insert, which could lead to wear to the underside of the tibial
polyethylene. Rotating platform components will compensate for any
mal-rotation, but can still lead to pain if excessive tibial insert
rotation causes soft-tissue impingement. Cite this article:
The long-term success of total knee replacement is multifactorial, including factors relating to the patient, the operation and the implant. The purpose of this study was to examine the 20-year survival of the cemented Anatomical Graduated Component (AGC) total knee replacement. Between 1983 and 2004, 7760 of these were carried out at our institution. Of these, 6726 knees which received the non-modular metal-backed tibial component with compression-moulded polyethylene and had a minimum two-year follow-up were available for study. In all, 36 knees were followed over 20 years with a survival of the tibial and femoral components together of 97.8% (95% confidence interval (CI) 0.9851 to 0.9677), with no implants being revised for polyethylene wear or osteolysis. Age >
70 was associated with increased survival (99.6%, 95% CI 99.0 to 99.8) (p <
0.0001) but pre-operative valgus alignment reduced survival (95.1%, 95% CI 90.0 to 97.6) (p = 0.0056). Age <
55 (p = 0.129), pre-operative varus alignment (p = 0.707), osteonecrosis (p = 0.06), rheumatoid arthritis (p = 0.247), and gender (p = 0.666) were not statistically associated with failure. We attribute the success of the AGC implant to its relatively unconstrained articular geometry and the durability of a non-modular metal-backed tibial component with compression moulded polyethylene.
The February 2013 Knee Roundup360 looks at: mobile-bearing TKRs; arthroscopic ACL reconstruction; the use of chondrocytes for osteochondral defects; ACL reconstruction and the return to pivoting sports; ACLs and the MOON study; the benefit of knee navigation; and trabecular metal.
Symptomatic cobalt toxicity from a failed total
hip replacement is a rare but devastating complication. It has been reported
following revision of fractured ceramic components, as well as in
patients with failed metal-on-metal articulations. Potential clinical
findings include fatigue, weakness, hypothyroidism, cardiomyopathy,
polycythaemia, visual and hearing impairment, cognitive dysfunction,
and neuropathy. We report a case of an otherwise healthy 46-year-old
patient, who developed progressively worsening symptoms of cobalt
toxicity beginning approximately six months following synovectomy
and revision of a fractured ceramic-on-ceramic total hip replacement
to a metal-on-polyethylene bearing. The whole blood cobalt levels
peaked at 6521 µg/l. The patient died from cobalt-induced cardiomyopathy.
Implant retrieval analysis confirmed a loss of 28.3 g mass of the
cobalt–chromium femoral head as a result of severe abrasive wear
by ceramic particles embedded in the revision polyethylene liner.
Autopsy findings were consistent with heavy metal-induced cardiomyopathy. We recommend using new ceramics at revision to minimise the risk
of wear-related cobalt toxicity following breakage of ceramic components. Cite this article:
Despite many claims of good wear properties following
total knee replacement (TKR) with an oxidised zirconium (OxZr) femoral
component, there are conflicting clinical results. We hypothesised
that there would be no difference in either the mid-term clinical
and radiological outcomes or the characteristics of the polyethylene
wear particles (weight, size and shape) in patients using an OxZr
or cobalt-chrome (CoCr) femoral component. In all 331Â patients underwent
bilateral TKR, receiving an OxZr femoral component in one knee and
a CoCr femoral component in the other. The mean follow-up was 7.5
years (6 to 8). Following aspiration, polyethylene wear particles
were analysed using thermogravimetric methods and scanning electron
microscopy. At the most recent follow-up, the mean Knee Society
score, Western Ontario and McMaster Universities Osteoarthritis
Index score, range of movement and satisfaction score were not significantly
different in the two groups. The mean weight, size, aspect ratio
and roundness of the aspirated wear particles were similar for each
femoral component. Survivorship of the femoral, tibial and patellar
components was 100% in both groups. In the absence of evidence of an advantage in the medium term
we cannot justify the additional expense of an OxZr femoral component.
The Norwegian Arthroplasty Register has shown that several designs of uncemented femoral stems give good or excellent survivorship. The overall findings for uncemented total hip replacement however, have been disappointing because of poor results with the use of metal-backed acetabular components. In this study, we exclusively investigated the medium-to long-term performance of primary uncemented metal-backed acetabular components. A total of 9113 primary uncemented acetabular components were implanted in 7937 patients between 1987 and 2007. These were included in a prospective, population-based observational study. All the implants were modular and metal-backed with ultra-high-molecular-weight polyethylene liners. The femoral heads were made of stainless steel, cobalt-chrome (CoCr) alloy or alumina ceramic. In all, seven different designs of acetabular component were evaluated by the Kaplan-Meier survivorship method and Cox regression analysis. Most acetabular components performed well up to seven years. When the endpoint was revision of the acetabular component because of aseptic loosening, the survival ranged between 87% and 100% at ten years. However, when the endpoint was revision for any reason, the survival estimates were 81% to 92% for the same implants at ten years. Aseptic loosening, wear, osteolysis and dislocation were the main reasons for the relatively poor overall performance of the acetabular components. Prostheses with alumina heads performed slightly better than those with stainless steel or CoCr alloy in subgroups. Whereas most acetabular components performed well at seven years, the survivorship declined with longer follow-up. Fixation was generally good. None of the metal-backed uncemented acetabular components with ultra-high-molecular-weight polyethylene liners in our study had satisfactory long-term results because of high rates of wear, osteolysis, aseptic loosening and dislocation.
We retrospectively reviewed, ten years after surgery, 100 consecutive total hip replacements in which the Duraloc 300 cup had been used. Post-operative radiographs were analysed for placement of the cup and interface gaps and follow-up radiographs for lucent lines, osteolysis, wear and migration. All the components were found to be stable with no evidence of loosening. The mean rate of wear was 0.12 mm/year. Three hips developed acetabular osteolysis at the level of the apex hole. Two have successfully undergone bone grafting without removal of the implants and one patient is awaiting surgery. The Duraloc 300 cup has a survival of 100% at ten years with no aseptic loosening and a low incidence of pelvic osteolysis.
We have evaluated the effect of vacuum aspiration of the iliac wing on the osseointegration of cement into the acetabulum. We entered a total of 40 patients undergoing primary total hip arthroplasty into two consecutive study groups. Group 1 underwent acetabular cement pressurisation for 60 seconds before insertion of the acetabular component. Group 2 had the same pressurisation with simultaneous vacuum suction of the ilium using an iliac-wing aspirator. Standard post-operative radiographs were reviewed blindly to assess the penetration of cement into the iliac wing. Penetration was significantly greater in the group with aspiration of the iliac wing.
We describe a cohort of patients with a high rate of mid-term failure following Kinemax Plus total knee replacement inserted between 1998 and 2001. This implant has been recorded as having a survival rate of 96% at ten years. However, in our series the survival rate was 75% at nine years. This was also significantly lower than that of subsequent consecutive series of PFC Sigma knee replacements performed by the same surgeon. No differences were found in the clinical and radiological parameters between the two groups. At revision the most striking finding was polyethylene wear. An independent analysis of the polyethylene components was therefore undertaken. Scanning electron microscopy revealed type 2 fusion defects in the ultra-high molecular weight polyethylene (UHMWPE), which indicated incomplete boundary fusion. Other abnormalities consistent with weak UHMWPE particle interface strength were present in both the explanted inserts and in unused inserts from the same period. We consider that these type 2 fusion defects are the cause of the early failure of the Kinemax implants. This may represent a manufacturing defect resulting in a form of programmed polyethylene failure.
In a prospective study, 93 unselected consecutive uncemented hip arthroplasties were performed in 80 patients using the titanium-coated RM acetabular component and the CLS femoral component. The mean age of the patients at operation was 52 years (28 to 81). None were lost to follow-up. In the 23 patients who had died (26 hips) only one acetabular component had been revised. In the 57 living patients (67 hips), 13 such revisions had been performed. Of the 14 revisions, seven were for osteolysis, five for loosening and two for infection. Survival analysis of this implant showed a total probability of survival of 83% (95% confidence interval 73 to 90), with all revisions as the endpoint, and a probability of 94% (95% confidence interval 87 to 98) with revision for aseptic loosening as the endpoint, indicating reliable long-term fixation of the titanium-coated RM acetabular component.
Components from 73 failed knee replacements (TKRs) consisting of rotating-platform, mobile-bearing and fixed-bearing implants were examined to assess the patterns of wear. The patterns were divided into low-grade (burnishing, abrasion and cold flow) and high-grade (scratching, pitting/metal embedding and delamination) to assess the severity of the wear of polyethylene. The rotating-platform group had a higher incidence of low-grade wear on the upper surface compared with the fixed-bearing group. By contrast, high-grade wear comprising scratching, pitting and third-body embedding was seen on the lower surface. Linear regression analysis showed a significant correlation of the wear scores between the upper and lower surfaces of the tibial insert (R2 = 0.29, p = 0.04) for the rotating-platform group, but no significant correlation was found for the fixed-bearing counterpart. This suggests that high-grade wear patterns on the upper surface are reduced with the rotating-platform design. However, the incidence of burnishing, pitting/third-body embedding and scratching wear patterns on the lower surface was higher compared with that in the fixed-bearing knee.
We have evaluated the results of total hip replacement in patients with congenital hip disease using 46 cemented all-polyethylene Charnley acetabular components implanted with the cotyloplasty technique in 34 patients (group A), and compared them with 47 metal-backed cementless acetabular components implanted without bone grafting in 33 patients (group B). Patients in group A were treated between 1988 and 1993 and those in group B between 1990 and 1995. The mean follow-up for group A was 16.6 years (12 to 18) and the mean follow-up for group B was 13.4 years (10 to 16). Revision for aseptic loosening was undertaken in 15 hips (32.6%) in group A and in four hips (8.5%) in group B. When liner exchange was included, a total of 13 hips were revised in group B (27.7%). The mean polyethylene wear was 0.11 mm/yr (0.002 to 0.43) and 0.107 mm/yr (0 to 0.62) for groups A and B, respectively. Polyethylene wear in group A was associated with linear osteolysis, and in group B with expansile osteolysis. In patients with congenital hip disease, when 80% cover of the implant can be obtained, a cementless acetabular component appears to be acceptable and provides durable fixation. However, because of the type of osteolysis arising with these devices, early exchange of a worn liner is recommended before extensive bone loss makes revision surgery more complicated.
We compared the results of 146 patients who received an anatomic modular knee fixed-bearing total knee replacement (TKR) in one knee and a low contact stress rotating platform mobile-bearing TKR in the other. There were 138 women and eight men with a mean age of 69.8 years (42 to 80). The mean follow-up was 13.2 years (11.0 to 14.5). The patients were assessed clinically and radiologically using the rating systems of the Hospital for Special Surgery and the Knee Society at three months, six months, one year, and annually thereafter. The assessment scores of both rating systems pre-operatively and at the final review did not show any statistically significant differences between the two designs of implant. In the anatomic modular knee group, one knee was revised because of aseptic loosening of the tibial component and one because of infection. In addition, three knees were revised because of wear of the polyethylene tibial bearing. In the low contact stress group, two knees were revised because of instability requiring exchange of the polyethylene insert and one because of infection. The radiological analysis found no statistical difference in the incidence of radiolucent lines at the final review (Student’s We found no evidence of the superiority of one design over the other at long-term follow-up.