We selected randomly a consecutive series of 162 patients requiring hip replacement to receive either a cementless, hemispherical, modular, titanium acetabular
We examined radiographic polyethylene wear in 233 cemented total hip arthroplasties (201 patients) with either a metal-backed or a non-metal-backed acetabular
The technique of femoral cement-in-cement revision
is well established, but there are no previous series reporting its
use on the acetabular side at the time of revision total hip replacement.
We describe the technique and report the outcome of 60 consecutive
acetabular cement-in-cement revisions in 59 patients at a mean follow-up
of 8.5 years (5 to 12). All had a radiologically and clinically
well-fixed acetabular cement mantle at the time of revision. During
the follow-up 29 patients died, but no hips were lost to follow-up.
The two most common indications for acetabular revision were recurrent
dislocation (46, 77%) and to complement femoral revision (12, 20%). Of the 60 hips, there were two cases of aseptic loosening of
the acetabular component (3.3%) requiring re-revision. No other
hip was clinically or radiologically loose (96.7%) at the latest
follow-up. One hip was re-revised for infection, four for recurrent
dislocation and one for disarticulation of a constrained component.
At five years the Kaplan-Meier survival rate was 100% for aseptic
loosening and 92.2% (95% CI 84.8 to 99.6), with revision for any cause
as the endpoint. These results support the use of cement-in-cement revision on
the acetabular side in appropriate cases. Theoretical advantages
include preservation of bone stock, reduced operating time, reduced
risk of complications and durable fixation.
We performed thermal analysis of polyethylene samples obtained from 73 new
We assessed differences in the incidence and appearance of the radiological signs of loosening of the
We report the long-term radiological results of 58 total hip arthroplasties (THA) using the Charnley offset-bore acetabular socket. Wear was measured at four sites and radiolucent lines and possible migration were recorded. Four
In laboratory tests, the ultra-high molecular weight polyethylene used for the acetabular
We reviewed 264 consecutive primary total hip replacements in 244 patients in which the Harris-Galante I porous-coated acetabular component had been used. The mean follow-up was 95 months (69 to 132). In 221 arthroplasties a 32 mm ceramic head had been used, and in the other 43 one of cobalt-chrome alloy. There were 124 women and 120 men with a mean age at operation of 56.8 years (21 to 83). Survival analysis of the acetabular components was performed using the following definitions of failure: 1) infection; 2) removal because of aseptic loosening; 3) removal for any cause; and 4) a worst-case analysis including removal of the
Failure of an acetabular
Fracture of the polyethylene acetabular
The Wroblewski golf ball acetabular
The need for supplementary screw fixation in acetabular revisions is still widely debated. We carried out 439 acetabular revisions over an eight-year period. In 171 hips with contained or small segmental defects, the Morscher press-fit
We carried out 71 primary total hip arthroplasties using porous-coated, hemispherical press-fit Duraloc ‘100 Series’
1. Prosthetic acetabular
This study presents the clinical and radiological results of 62 consecutive acetabular revisions in 58 patients, at a mean of 16.5 years follow-up (15 to 20). The Kaplan-Meier survivorship for the
Ten acetabular
The custom triflange is a patient-specific implant
for the treatment of severe bone loss in revision total hip arthroplasty
(THA). Through a process of three-dimensional modelling and prototyping,
a hydroxyapatite-coated component is created for acetabular reconstruction.
There are seven level IV studies describing the clinical results
of triflange components. The most common complications include dislocation
and infection, although the rates of implant removal are low. Clinical
results are promising given the challenging problem. We describe
the design, manufacture and implantation process and review the
clinical results, contrasting them to other methods of acetabular
reconstruction in revision THA. Cite this article:
We describe a simple, retroperitoneal approach for the removal of acetabular components that have migrated into the pelvis. The dense fibrous tissue layer which surrounds the implant protects the iliac vessels during removal of the
Between 1972 and 1990, we performed 168 primary low-friction arthroplasties in 125 patients with acetabular protrusion. Twelve hips were lost to follow-up within eight years and eight which became infected were excluded from the final study. Of the 148 hips remaining, 62 with a mild protrusion were classified as group 1, 54 with moderate or severe protrusion as group 2 and, after 1985, 32 with moderate and severe protrusion which required bone grafts as group 3. The mean follow-up was 18.3 years (3 to 24) for group 1, 17.4 years (8 to 22) for group 2 and ten years (8 to 13) for group 3. There were 31 revisions of the
One concern about the fixation of HA-coated implants is the possible disintegration of the surface, with the migration of HA granules into the joint space, producing third-body wear. We report a study of six revisions of HA-coated polyethylene RM