We present our experience of forearm lengthening
in children with various conditions performed by a single surgeon between
1995 and 2009. A total of 19 children with a mean age of 9.8 years
(2.1 to 15.9) at the time of surgery had 22 forearm lengthenings
using either an Ilizarov/spatial and Ilizarov circular frame or
a monolateral external fixator. The patients were divided into two
groups: group A, in whom the purpose of treatment was to restore
the relationship between the radius and the ulna, and group B, in
whom the objective was to gain forearm length. The mean follow-up after
removal of the frame was 26 months (13 to 53). There were ten patients (11 forearms) in group A with a mean
radioulnar discrepancy of 2.4 cm (1.5 to 3.3) and nine patients
(11 forearms) in group B. In group A, the mean lengthening achieved
was 2.7 cm (1.0 to 5.5), with a lengthening index of 11.1 weeks/cm.
Equalisation or overcorrection of the discrepancy was achieved in
seven of 11 forearms, but lengthening was only partially successful
at preventing subluxation or dislocation of the radial head. In
group B, the mean lengthening achieved was 3.8 cm (1.9 to 6.8),
with a lengthening index of 7.25 weeks/cm. Common complications
in both groups were pin-site infection and poor regenerate formation. Forearm lengthening by distraction osteogenesis is a worthwhile
procedure in children that can improve cosmesis and function, particularly
in patients with shortening of both radius and ulna.
The objective of this study was to validate the
efficacy of Takeuchi classification for lateral hinge fractures
(LHFs) in open wedge high tibial osteotomy (OWHTO). In all 74 osteoarthritic
knees (58 females, 16 males; mean age 62.9 years, standard deviation
7.5, 42 to 77) were treated with OWHTO using a TomoFix plate. The
knees were divided into non-fracture (59 knees) and LHF (15 knees)
groups, and the LHF group was further divided into Takeuchi types
I, II, and III (seven, two, and six knees, respectively). The outcomes
were assessed pre-operatively and one year after OWHTO. Pre-operative
characteristics (age, gender and body mass index) showed no significant
difference between the two groups. The mean Japanese Orthopaedic
Association score was significantly improved one year after operation
regardless of the presence or absence of LHF (p = 0.0015, p <
0.001, respectively). However, six of seven type I cases had no
LHF-related complications; both type II cases had delayed union;
and of six type III cases, two had delayed union with correction
loss and one had overcorrection. These results suggest that Takeuchi
type II and III LHFs are structurally unstable compared with type
I. Cite this article:
Two types of fracture, early and late, have been
reported following limb lengthening in patients with achondroplasia (ACH)
and hypochondroplasia (HCH). We reviewed 25 patients with these conditions who underwent 72
segmental limb lengthening procedures involving the femur and/or
tibia, between 2003 and 2011. Gender, age at surgery, lengthened
segment, body mass index, the shape of the callus, the amount and
percentage of lengthening and the healing index were evaluated to determine
predictive factors for the occurrence of early (within three weeks
after removal of the fixation pins) and late fracture (>
three weeks
after removal of the pins). The Mann‑Whitney U test and Pearson’s
chi-squared test for univariate analysis and stepwise regression
model for multivariate analysis were used to identify the predictive factor
for each fracture. Only one patient (two tibiae) was excluded from
the analysis due to excessively slow formation of the regenerate,
which required supplementary measures. A total of 24 patients with
70 limbs were included in the study. There were 11 early fractures in eight patients. The shape of
the callus (lateral or central callus) was the only statistical
variable related to the occurrence of early fracture in univariate
and multivariate analyses. Late fracture was observed in six limbs
and the mean time between removal of the fixation pins and fracture
was 18.3 weeks (3.3 to 38.4). Lengthening of the tibia, larger healing
index, and lateral or central callus were related to the occurrence
of a late fracture in univariate analysis. A multivariate analysis
demonstrated that the shape of the callus was the strongest predictor
for late fracture (odds ratio: 19.3, 95% confidence interval: 2.91
to 128). Lateral or central callus had a significantly larger risk
of fracture than fusiform, cylindrical, or concave callus. Radiological monitoring of the shape of the callus during distraction
is important to prevent early and late fracture of lengthened limbs
in patients with ACH or HCH. In patients with thin callus formation,
some measures to stimulate bone formation should be considered as
early as possible. Cite this article:
The use of pulsed electromagnetic fields (PEMF)
to stimulate bone growth has been recommended as an alternative to
the surgical treatment of ununited scaphoid fractures, but has never
been examined in acute fractures. We hypothesised that the use of
PEMF in acute scaphoid fractures would accelerate the time to union
by 30% in a randomised, double-blind, placebo-controlled, multicentre
trial. A total of 53 patients in three different medical centres
with a unilateral undisplaced acute scaphoid fracture were randomly
assigned to receive either treatment with PEMF (n = 24) or a placebo
(n = 29). The clinical and radiological outcomes were assessed at
four, six, nine, 12, 24 and 52 weeks. A log-rank analysis showed that neither time to clinical and
radiological union nor the functional outcome differed significantly
between the groups. The clinical assessment of union indicated that
at six weeks tenderness in the anatomic snuffbox (p = 0.03) as well
as tenderness on longitudinal compression of the scaphoid (p = 0.008) differed
significantly in favour of the placebo group. We conclude that stimulation of bone growth by PEMF has no additional
value in the conservative treatment of acute scaphoid fractures.