Aims. The aim of this study was to identify factors associated with five-year cancer-related mortality in patients with limb and trunk soft-tissue sarcoma (STS) and develop and validate
The number of convolutional neural networks (CNN) available for fracture detection and classification is rapidly increasing. External validation of a CNN on a temporally separate (separated by time) or geographically separate (separated by location) dataset is crucial to assess generalizability of the CNN before application to clinical practice in other institutions. We aimed to answer the following questions: are current CNNs for fracture recognition externally valid?; which methods are applied for external validation (EV)?; and, what are reported performances of the EV sets compared to the internal validation (IV) sets of these CNNs? The PubMed and Embase databases were systematically searched from January 2010 to October 2020 according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The type of EV, characteristics of the external dataset, and diagnostic performance characteristics on the IV and EV datasets were collected and compared. Quality assessment was conducted using a seven-item checklist based on a modified Methodologic Index for NOn-Randomized Studies instrument (MINORS).Aims
Methods
Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma and orthopaedic applications, very few progress to inform clinical practice. One key reason for this is the lack of a clear pathway from development to deployment. In order to assist with this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework – a five-stage approach to the clinical practice adoption of AI in the setting of trauma and orthopaedics, based on the IDEAL principles ( Cite this article:
The risk factors for recurrent instability (RI) following a primary traumatic anterior shoulder dislocation (PTASD) remain unclear. In this study, we aimed to determine the rate of RI in a large cohort of patients managed nonoperatively after PTASD and to develop a clinical prediction model. A total of 1,293 patients with PTASD managed nonoperatively were identified from a trauma database (mean age 23.3 years (15 to 35); 14.3% female). We assessed the prevalence of RI, and used multivariate regression modelling to evaluate which demographic- and injury-related factors were independently predictive for its occurrence.Aims
Methods
An objective technological solution for tracking adherence to at-home shoulder physiotherapy is important for improving patient engagement and rehabilitation outcomes, but remains a significant challenge. The aim of this research was to evaluate performance of machine-learning (ML) methodologies for detecting and classifying inertial data collected during in-clinic and at-home shoulder physiotherapy exercise. A smartwatch was used to collect inertial data from 42 patients performing shoulder physiotherapy exercises for rotator cuff injuries in both in-clinic and at-home settings. A two-stage ML approach was used to detect out-of-distribution (OOD) data (to remove non-exercise data) and subsequently for classification of exercises. We evaluated the performance impact of grouping exercises by motion type, inclusion of non-exercise data for algorithm training, and a patient-specific approach to exercise classification. Algorithm performance was evaluated using both in-clinic and at-home data.Aims
Methods
This study aimed to compare the performance of survival prediction models for bone metastases of the extremities (BM-E) with pathological fractures in an Asian cohort, and investigate patient characteristics associated with survival. This retrospective cohort study included 469 patients, who underwent surgery for BM-E between January 2009 and March 2022 at a tertiary hospital in South Korea. Postoperative survival was calculated using the PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR models. Model performance was assessed with area under the curve (AUC), calibration curve, Brier score, and decision curve analysis. Cox regression analyses were performed to evaluate the factors contributing to survival.Aims
Methods
Natural Language Processing (NLP) offers an automated method to extract data from unstructured free text fields for arthroplasty registry participation. Our objective was to investigate how accurately NLP can be used to extract structured clinical data from unstructured clinical notes when compared with manual data extraction. A group of 1,000 randomly selected clinical and hospital notes from eight different surgeons were collected for patients undergoing primary arthroplasty between 2012 and 2018. In all, 19 preoperative, 17 operative, and two postoperative variables of interest were manually extracted from these notes. A NLP algorithm was created to automatically extract these variables from a training sample of these notes, and the algorithm was tested on a random test sample of notes. Performance of the NLP algorithm was measured in Statistical Analysis System (SAS) by calculating the accuracy of the variables collected, the ability of the algorithm to collect the correct information when it was indeed in the note (sensitivity), and the ability of the algorithm to not collect a certain data element when it was not in the note (specificity).Aims
Methods
Aims. Failure of irrigation and debridement (I&D) for prosthetic joint infection (PJI) is influenced by numerous host, surgical, and pathogen-related factors. We aimed to develop and validate a practical, easy-to-use tool based on
Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli.Aims
Methods
The December 2023 Research Roundup. 360. looks at: Tissue integration and chondroprotective potential of acetabular labral augmentation with autograft tendon: study of a porcine model; The Irish National Orthopaedic Register under cyberattack: what happened, and what were the consequences?; An overview of
The June 2023 Hip & Pelvis Roundup. 360. looks at:
The August 2023 Hip & Pelvis Roundup. 360. looks at: Using
The June 2024 Hip & Pelvis Roundup. 360. looks at:
Aims. This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. Methods. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA),
The August 2023 Knee Roundup. 360. looks at: Curettage and cementation of giant cell tumour of bone: is arthritis a given?; Anterior knee pain following total knee arthroplasty: does the patellar cement-bone interface affect postoperative anterior knee pain?; Nickel allergy and total knee arthroplasty; The use of artificial intelligence for the prediction of periprosthetic joint infection following aseptic revision total knee arthroplasty; Ambulatory unicompartmental knee arthroplasty: development of a patient selection tool using
Aims. The aim of this study was to evaluate the ability of a machine-learning algorithm to diagnose prosthetic loosening from preoperative radiographs and to investigate the inputs that might improve its performance. Methods. A group of 697 patients underwent a first-time revision of a total hip (THA) or total knee arthroplasty (TKA) at our institution between 2012 and 2018. Preoperative anteroposterior (AP) and lateral radiographs, and historical and comorbidity information were collected from their electronic records. Each patient was defined as having loose or fixed components based on the operation notes. We trained a series of convolutional neural network (CNN) models to predict a diagnosis of loosening at the time of surgery from the preoperative radiographs. We then added historical data about the patients to the best performing model to create a final model and tested it on an independent dataset. Results. The convolutional neural network we built performed well when detecting loosening from radiographs alone. The first model built de novo with only the radiological image as input had an accuracy of 70%. The final model, which was built by fine-tuning a publicly available model named DenseNet, combining the AP and lateral radiographs, and incorporating information from the patient’s history, had an accuracy, sensitivity, and specificity of 88.3%, 70.2%, and 95.6% on the independent test dataset. It performed better for cases of revision THA with an accuracy of 90.1%, than for cases of revision TKA with an accuracy of 85.8%. Conclusion. This study showed that
Cite this article:
The February 2023 Knee Roundup360 looks at: Machine-learning models: are all complications predictable?; Positive cultures can be safely ignored in revision arthroplasty patients that do not meet the 2018 International Consensus Meeting Criteria; Spinal versus general anaesthesia in contemporary primary total knee arthroplasty; Preoperative pain and early arthritis are associated with poor outcomes in total knee arthroplasty; Risk factors for infection and revision surgery following patellar tendon and quadriceps tendon repairs; Supervised versus unsupervised rehabilitation following total knee arthroplasty; Kinematic alignment has similar outcomes to mechanical alignment: a systematic review and meta-analysis; Lifetime risk of revision after knee arthroplasty influenced by age, sex, and indication; Risk factors for knee osteoarthritis after traumatic knee injury.
As advancements in total knee arthroplasty progress at an exciting pace, two areas are of special interest, as they directly impact implant design and surgical decision making. Knee morphometry considers the three-dimensional shape of the articulating surfaces within the knee joint, and knee phenotyping provides the ability to categorize alignment into practical groupings that can be used in both clinical and research settings. This annotation discusses the details of these concepts, and the ways in which they are helping us better understand the individual subtleties of each patient’s knee. Cite this article:
The preoperative grading of chondrosarcomas of bone that accurately predicts surgical management is difficult for surgeons, radiologists, and pathologists. There are often discrepancies in grade between the initial biopsy and the final histology. Recent advances in the use of imaging methods have shown promise in the ability to predict the final grade. The most important clinical distinction is between grade 1 chondrosarcomas, which are amenable to curettage, and resection-grade chondrosarcomas (grade 2 and 3) which require en bloc resection. The aim of this study was to evaluate the use of a Radiological Aggressiveness Score (RAS) to predict the grade of primary chondrosarcomas in long bones and thus to guide management. A total of 113 patients with a primary chondrosarcoma of a long bone presenting between January 2001 and December 2021 were identified on retrospective review of a single oncology centre’s prospectively collected database. The nine-parameter RAS included variables from radiographs and MRI scans. The best cut-off of parameters to predict the final grade of chondrosarcoma after resection was determined using a receiver operating characteristic curve (ROC), and this was correlated with the biopsy grade.Aims
Methods