The aim of this study was to investigate the impact of maturity status at the time of surgery on final spinal height in patients with an adolescent idiopathic scoliosis (AIS) using the spine-pelvic index (SPI). The SPI is a self-control ratio that is independent of age and maturity status. The study recruited 152 female patients with a Lenke 1 AIS. The additional inclusion criteria were a thoracic Cobb angle between 45° and 70°, Risser 0 to 1 or 3 to 4 at the time of surgery, and follow-up until 18 years of age or Risser stage 5. The patients were stratified into four groups: Risser 0 to 1 and selective fusion surgery (Group 1), Risser 0 to 1 and non-selective fusion (Group 2), Risser 3 to 4 and selective fusion surgery (Group 3), and Risser 3 to 4 and non-selective fusion (Group 4). The height of spine at follow-up (HOSf) and height of pelvis at follow-up (HOPf) were measured and the predicted HOS (pHOS) was calculated as 2.22 (SPI) × HOPf. One-way analysis of variance (ANOVA) was performed for statistical analysis.Aims
Patients and Methods
Magnetically controlled growing rod (MCGR) systems use non-invasive
spinal lengthening for the surgical treatment of early-onset scoliosis
(EOS). The primary aim of this study was to evaluate the performance
of these devices in the prevention of progression of the deformity.
A secondary aim was to record the rate of complications. An observational study of 31 consecutive children with EOS, of
whom 15 were male, who were treated between December 2011 and October
2017 was undertaken. Their mean age was 7.7 years (2 to 14). The
mean follow-up was 47 months (24 to 69). Distractions were completed
using the tailgating technique. The primary outcome measure was
correction of the radiographic deformity. Secondary outcomes were
growth, functional outcomes and complication rates.Aims
Patients and Methods
The purpose of this study was to analyze the incidence of the different ultrasound phenotypes of developmental dysplasia of the hip (DDH), and to determine their subsequent course. A consecutive series of 28 092 neonates was screened and classified according to the Graf method as part of a nationwide surveillance programme, and then followed prospectively. Abnormal hips were followed until they became normal (Graf type I). Type IIb hips and higher grades were treated by abduction in a Tübinger orthosis until normal. Dislocated hips underwent closed or open reduction.Aims
Patients and Methods
The April 2015 Hip &
Pelvis Roundup360 looks at: Goal-directed fluid therapy in hip fracture; Liberal blood transfusion no benefit in the longer term; Repeated measures: increased accuracy or compounded errors?; Peri-acetabular osteotomy safer than perhaps thought?; Obesity and peri-acetabular osteotomy: poor bedfellows; Stress fracture in peri-acetabular osteotomy; Infection and tantalum implants; Highly crosslinked polyethylene really does work
We report the results of Vulpius transverse gastrocsoleus
recession for equinus gait in 26 children with cerebral palsy (CP),
using the Gait Profile Score (GPS), Gait Variable Scores (GVS) and
movement analysis profile. All children had an equinus deformity
on physical examination and equinus gait on three-dimensional gait
analysis prior to surgery. The pre-operative and post-operative
GPS and GVS were statistically analysed. There were 20 boys and
6 girls in the study cohort with a mean age at surgery of 9.2 years
(5.1 to 17.7) and 11.5 years (7.3 to 20.8) at follow-up. Of the
26 children, 14 had spastic diplegia and 12 spastic hemiplegia.
Gait function improved for the cohort, confirmed by a decrease in
mean GPS from 13.4° pre-operatively to 9.0° final review (p <
0.001). The change was 2.8 times the minimal clinically important
difference (MCID). Thus the improvements in gait were both clinically and
statistically significant. The transverse gastrocsoleus recession
described by Vulpius is an effective procedure for equinus gait
in selected children with CP, when there is a fixed contracture
of the gastrocnemius and soleus muscles. Cite this article:
This review of the literature presents the current understanding of Scheuermann’s kyphosis and investigates the controversies concerning conservative and surgical treatment. There is considerable debate regarding the pathogenesis, natural history and treatment of this condition. A benign prognosis with settling of symptoms and stabilisation of the deformity at skeletal maturity is expected in most patients. Observation and programmes of exercise are appropriate for mild, flexible, non-progressive deformities. Bracing is indicated for a moderate deformity which spans several levels and retains flexibility in motivated patients who have significant remaining spinal growth. The loss of some correction after the completion of bracing with recurrent anterior vertebral wedging has been reported in approximately one-third of patients. Surgical correction with instrumented spinal fusion is indicated for a severe kyphosis which carries a risk of progression beyond the end of growth causing cosmetic deformity, back pain and neurological complications. There is no consensus on the effectiveness of different techniques and types of instrumentation. Techniques include posterior-only and combined anteroposterior spinal fusion with or without posterior osteotomies across the apex of the deformity. Current instrumented techniques include hybrid and all-pedicle screw constructs.
Guiding growth by harnessing the ability of growing bone to undergo plastic deformation is one of the oldest orthopaedic principles. Correction of deformity remains a major part of the workload for paediatric orthopaedic surgeons and recently, along with developments in limb reconstruction and computer-directed frame correction, there has been renewed interest in surgical methods of physeal manipulation or ‘guided growth’. Manipulating natural bone growth to correct a deformity is appealing, as it allows gradual correction by non- or minimally invasive methods. This paper reviews the techniques employed for guided growth in current orthopaedic practice, including the basic science and recent advances underlying mechanical physeal manipulation of both healthy and pathological physes.
The April 2012 Spine Roundup360 looks at yoga for lower back pain, spinal tuberculosis, complications of spinal surgery, fusing the subaxial cervical spine, minimally invasive surgery and osteoporotic vertebral fractures, spinal surgery in the over 65s, and pain relief after spinal surgery
The Ponseti method of clubfoot management requires a period of bracing in order to maintain correction. This study compared the effectiveness of ankle foot orthoses and Denis Browne boots and bar in the prevention of recurrence following successful initial management. Between 2001 and 2003, 45 children (69 feet) with idiopathic clubfeet achieved full correction following Ponseti casting with or without a tenotomy, of whom 17 (30 clubfeet) were braced with an ankle foot orthosis while 28 (39 clubfeet) were prescribed with Denis Browne boots and bar. The groups were similar in age, gender, number of casts and tenotomy rates. The mean follow-up was 60 months (50 to 72) in the ankle foot orthosis group and 47 months (36 to 60) in the group with boots and bars. Recurrence requiring additional treatment occurred in 25 of 30 (83%) of the ankle foot orthosis group and 12 of 39 (31%) of the group with boots and bars (p <
0.001). Additional procedures included repeat tenotomy (four in the ankle foot orthosis group and five in the group treated with boot and bars), limited posterior release with or without tendon transfers (seven in the ankle foot orthosis group and two in the group treated with boots and bars), posteromedial releases (nine in the orthosis group) and midfoot osteotomies (five in the orthosis group, p <
0.001). Following initial correction by the Ponseti method, children managed with boots and bars had far fewer recurrences than those managed with ankle foot orthoses. Foot abduction appears to be important to maintain correction of clubfeet treated by the Ponseti method, and this cannot be achieved with an ankle foot orthosis.
We conducted a prospective randomised controlled trial to compare the standard Ponseti plaster method with an accelerated method for the treatment of idiopathic congenital talipes equinovarus. The standard weekly plaster-change method was accelerated to three times per week. We hypothesised that both methods would be equally effective in achieving correction. A total of 40 consecutive patients (61 feet) were entered into the trial. The initial median Pirani score was 5.5 (95% confidence interval 4.5 to 6.0) in the accelerated group and 5.0 (95% confidence interval 4.0 to 5.0) in the standard control group. The scores decreased by an average 4.5 in the accelerated group and 4.0 in the control group. There was no significant difference in the final Pirani score between the two groups (chi-squared test, p = 0.308). The median number of treatment days in plaster was 16 in the accelerated group and 42 in the control group (p <
0.001). Of the 19 patients in the accelerated group, three required plaster treatment for more than 21 days and were then assigned to the standard control method. Of the 40 patients, 36 were followed for a minimum of six months. These results suggest that comparable outcomes can be achieved with an accelerated Ponseti method. The ability to complete all necessary manipulations within a three-week period facilitates treatment where patients have to travel long distances.
We carried out 123 consecutive total ankle replacements in 111 patients with a mean follow-up of four years (2 to 8). Patients with a hindfoot deformity of up to 10° (group A, 91 ankles) were compared with those with a deformity of 11° to 30° (group B, 32 ankles). There were 18 failures (14.6%), with no significant difference in survival between groups A and B. The clinical outcome as measured by the post-operative American Orthopaedic Foot and Ankle Surgeons score was significantly better in group B (p = 0.036). There was no difference between the groups regarding the post-operative range of movement and complications. Correction of the hindfoot deformity was achieved to within 5° of neutral in 27 ankles (84%) of group B patients. However, gross instability was the most common mode of failure in group B. This was not adequately corrected by reconstruction of the lateral ligament. Total ankle replacement can safely be performed in patients with a hindfoot deformity of up to 30°. The importance of adequate correction of alignment and instability is highlighted.