As many as 25% to 40% of unicompartmental knee
replacement (UKR) revisions are performed for pain, a possible cause
of which is proximal tibial strain. The aim of this study was to
examine the effect of
Patella infera may occur after reconstruction of the anterior cruciate ligament (ACL), high tibial osteotomy and total knee replacement (TKR). Restriction of movement of the knee and pain may result. Our aim was to compare the incidence and to assess the effects of patella infera after TKR and unicompartmental knee replacement (UKR). We reviewed radiographs of the knees of 84 patients who had had either TKR or
We prospectively followed 171 patients who underwent
bilateral unicompartmental knee replacement (UKR) over a period
of two years. Of these, 124 (72.5%) underwent a simultaneous bilateral
procedure and 47 (27.5%) underwent a staged procedure. The mean
cumulative operating time and length of hospital stay were both
shorter in the simultaneous group, by 22.5 minutes (p <
0.001)
and three days (p <
0.001), respectively. The mean reduction
in haemoglobin level post-operatively was greater by 0.15 g/dl in
the simultaneous group (p = 0.023), but this did not translate into
a significant increase in the number of patients requiring blood
transfusion (p = 1.000). The mean hospital cost was lower by $8892
in the simultaneous group (p <
0.001). There was no significant
difference in the rate of complications between the groups, and
at two-year follow-up there was no difference in the outcomes between
the two groups. We conclude that simultaneous bilateral
Robots have been used in surgery since the late
1980s. Orthopaedic surgery began to incorporate robotic technology
in 1992, with the introduction of ROBODOC, for the planning and
performance of total hip replacement. The use of robotic systems
has subsequently increased, with promising short-term radiological
outcomes when compared with traditional orthopaedic procedures.
Robotic systems can be classified into two categories: autonomous
and haptic (or surgeon-guided). Passive surgery systems, which represent
a third type of technology, have also been adopted recently by orthopaedic
surgeons. While autonomous systems have fallen out of favour, tactile systems
with technological improvements have become widely used. Specifically,
the use of tactile and passive robotic systems in unicompartmental
knee replacement (UKR) has addressed some of the historical mechanisms
of failure of non-robotic
This prospective study describes the outcome of the first 1000 phase 3 Oxford medial unicompartmental knee replacements (UKRs) implanted using a minimally invasive surgical approach for the recommended indications by two surgeons and followed up independently. The mean follow-up was 5.6 years (1 to 11) with 547 knees having a minimum follow-up of five years. At five years their mean Oxford knee score was 41.3 (. sd. 7.2), the mean American Knee Society Objective Score 86.4 (. sd. 13.4), mean American Knee Society Functional Score 86.1 (. sd. 16.6), mean Tegner activity score 2.8 (. sd. 1.1). For the entire cohort, the mean maximum flexion was 130° at the time of final review. The incidence of implant-related re-operations was 2.9%; of these 29 re-operations two were revisions requiring revision knee replacement components with stems and wedges, 17 were conversions to a primary total knee replacement, six were open reductions for dislocation of the bearing, three were secondary lateral UKRs and one was revision of a tibial component. The most common reason for further surgical intervention was progression of arthritis in the lateral compartment (0.9%), followed by dislocation of the bearing (0.6%) and revision for unexplained pain (0.6%). If all implant-related re-operations are considered failures, the ten-year survival rate was 96% (95% confidence interval, 92.5 to 99.5). If only revisions requiring revision components are considered failures the ten-year survival rate is 99.8% (confidence interval 99 to 100). This is the largest published series of UKRs implanted through a minimally invasive surgical approach and with ten-year survival data. The survival rates are similar to those obtained with a standard open approach whereas the function is better. This demonstrates the effectiveness and safety of a minimally invasive surgical approach for implanting the Oxford
The Oxford mobile-bearing unicompartmental knee
replacement (UKR) is an effective and safe treatment for osteoarthritis
of the medial compartment. The results in the lateral compartment
have been disappointing due to a high early rate of dislocation
of the bearing. A series using a newly designed domed tibial component
is reported. The first 50 consecutive domed lateral Oxford UKRs in 50 patients
with a mean follow-up of three years (2.0 to 4.3) were included.
Clinical scores were obtained prospectively and Kaplan-Meier survival
analysis was performed for different endpoints. Radiological variables
related to the position and alignment of the components were measured. One patient died and none was lost to follow-up. The cumulative
incidence of dislocation was 6.2% (95% confidence interval (CI)
2.0 to 17.9) at three years. Survival using revision for any reason
and aseptic revision was 94% (95% CI 82 to 98) and 96% (95% CI 85
to 99) at three years, respectively. Outcome scores, visual analogue
scale for pain and maximum knee flexion showed a significant improvement
(p <
0.001). The mean Oxford knee score was 43 (. sd. 5.3),
the mean Objective American Knee Society score was 91 (. sd. 13.9)
and the mean Functional American Knee Society score was 90 (. sd. 17.5).
The mean maximum flexion was 127° (90° to 145°). Significant elevation
of the lateral joint line as measured by the proximal tibial varus
angle (p = 0.04) was evident in the dislocation group when compared
with the non-dislocation group. Clinical results are excellent and short-term survival has improved
when compared with earlier series. The risk of dislocation remains
higher using a mobile-bearing
We randomised 102 knees suitable for a unicompartmental replacement to receive either a unicompartmental (UKR) or total knee replacement (TKR) after arthrotomy. Both groups were well matched with a predominance of females and a mean age of 69 years. Patients in the
The Oxford Unicompartmental Knee replacement (UKR) was introduced as a design to reduce polyethylene wear. There has been one previous retrieval study involving this implant, which reported very low rates of wear in some specimens but abnormal patterns of wear in others. There has been no further investigation of these abnormal patterns. The bearings were retrieved from 47 patients who had received a medial Oxford
Failure of a unicompartmental knee replacement (UKR) may be caused by progressive osteoarthritis of the knee and/or failure of the prosthesis. Limb alignment can influence both of these factors. We have examined the fate of the other compartments and measured changes in leg alignment after
There has been a recent resurgence in interest in combined partial knee arthroplasty (PKA) as an alternative to total knee arthroplasty (TKA). The varied terminology used to describe these procedures leads to confusion and ambiguity in communication between surgeons, allied health professionals, and patients. A standardized classification system is required for patient safety, accurate clinical record-keeping, clear communication, correct coding for appropriate remuneration, and joint registry data collection. An advanced PubMed search was conducted, using medical subject headings (MeSH) to identify terms and abbreviations used to describe knee arthroplasty procedures. The search related to TKA, unicompartmental (UKA), patellofemoral (PFA), and combined PKA procedures. Surveys were conducted of orthopaedic surgeons, trainees, and biomechanical engineers, who were asked which of the descriptive terms and abbreviations identified from the literature search they found most intuitive and appropriate to describe each procedure. The results were used to determine a popular consensus.Aims
Materials and Methods
We present detailed information about early morbidity
after aseptic revision knee replacement from a nationwide study.
All aseptic revision knee replacements undertaken between 1st October
2009 and 30th September 2011 were analysed using the Danish National
Patient Registry with additional information from the Danish Knee
Arthroplasty Registry. The 1218 revisions involving 1165 patients
were subdivided into total revisions, large partial revisions, partial
revisions and revisions of unicondylar replacements (UKR revisions).
The mean age was 65.0 years (27 to 94) and the median length of
hospital stay was four days (interquartile range: 3 to 5), with
a 90 days re-admission rate of 9.9%,
re-operation rate of 3.5% and mortality rate of 0.2%. The age ranges
of 51 to 55 years (p = 0.018), 76 to 80 years (p <
0.001) and ≥ 81
years (p <
0.001) were related to an increased risk of re-admission.
The age ranges of 76 to 80 years (p = 0.018) and the large partial
revision subgroup (p = 0.073) were related to an increased risk
of re-operation. The ages from 76 to 80 years (p <
0.001), age ≥ 81
years (p <
0.001) and surgical time >
120 min (p <
0.001)
were related to increased length of hospital stay, whereas the use
of a tourniquet (p = 0.008) and surgery in a low volume centre (p
= 0.013) were related to shorter length of stay. In conclusion, we found a similar incidence of early post-operative
morbidity after aseptic knee revisions as has been reported after
primary procedures. This suggests that a length of hospital stay ≤ four
days and discharge home at that time is safe following aseptic knee
revision surgery in Denmark. Cite this article:
This prospective study reports the 15-year survival and ten-year
functional outcome of a consecutive series of 1000 minimally invasive
Phase 3 Oxford medial UKAs (818 patients, 393 men, 48%, 425 women,
52%, mean age 66 years; 32 to 88). These were implanted by two surgeons
involved with the design of the prosthesis to treat anteromedial
osteoarthritis and spontaneous osteonecrosis of the knee, which
are recommended indications. Patients were prospectively identified
and followed up independently for a mean of 10.3 years (5.3 to 16.6). At ten years, the mean Oxford Knee Score was 40 (standard deviation
( This is the only large series of minimally invasive UKAs with
15-year survival data. The results support the continued use of
minimally invasive UKA for the recommended indications. Cite this article:
The December 2014 Knee Roundup360 looks at: national guidance on arthroplasty thromboprophylaxis is effective; unicompartmental knee replacement has the edge in terms of short-term complications; stiff knees, timing and manipulation; neuropathic pain and total knee replacement; synovial fluid α-defensin and CRP: a new gold standard in joint infection diagnosis?; how to assess anterior knee pain?; where is the evidence? Five new implants under the spotlight; and a fresh look at ACL reconstruction
The aim of this study was to evaluate the risk
factors for dislocation of the bearing after a mobile-bearing Oxford medial
unicompartmental knee replacement (UKR) and to test the hypothesis
that surgical factors, as measured from post-operative radiographs,
are associated with its dislocation From a total of 480 UKRs performed between 2001 and 2012, in
391 patients with a mean age of 66.5 years (45 to 82) (316 female,
75 male), we identified 17 UKRs where bearing dislocation occurred.
The post-operative radiological measurements of the 17 UKRs and
51 matched controls were analysed using conditional logistic regression analysis.
The post-operative radiological measurements included post-operative
change in limb alignment, the position of the femoral and tibial
components, the resection depth of the proximal tibia, and the femoral component-posterior
condyle classification. We concluded that a post-operative decrease in the posterior
tibial slope relative to the pre-operative value was the only significant
determinant of dislocation of the bearing after medial Oxford UKR
(odds ratio 1.881; 95% confidence interval 1.272 to 2.779). A post-operative
posterior tibial slope <
8.45° and a difference between the pre-operative
and post-operative posterior tibial slope of >
2.19° may increase
the risk of dislocation. Cite this article:
This is the second of a series of reviews of registries. This review looks specifically at worldwide registry data that have been collected on knee arthroplasty, what we have learned from their reports, and what the limitations are as to what we currently know.
We studied the bone mineral density (BMD) and
the bone mineral content (BMC) of the proximal tibia in patients with
a well-functioning uncemented Oxford medial compartment arthroplasty
using the Lunar iDXA bone densitometer. Our hypothesis was that
there would be decreased BMD and BMC adjacent to the tibial base
plate and increased BMD and BMC at the tip of the keel. There were 79 consecutive patients (33 men, 46 women) with a
mean age of 65 years (44 to 84) with a minimum two-year follow-up
(mean 2.6 years (2.0 to 5.0)) after unilateral arthroplasty, who
were scanned using a validated standard protocol where seven regions
of interest (ROI) were examined and compared with the contralateral
normal knee. All had well-functioning knees with a mean Oxford knee
score of 43 (14 to 48) and mean Knee Society function score of 90
(20 to 100), showing a correlation with the increasing scores and
higher BMC and BMD values in ROI 2 in the non-implanted knee relative
to the implanted knee (p = 0.013 and p = 0.015, respectively). The absolute and percentage changes in BMD and BMC were decreased
in all ROIs in the implanted knee compared with the non-implanted
knee, but this did not reach statistical significance. Bone loss
was markedly less than reported losses with total knee replacement. There was no significant association with side, although there
was a tendency for the BMC to decrease with age in men. The BMC
was less in the implanted side relative to the non-implanted side
in men compared with women in ROI 2 (p = 0.027), ROI 3 (p = 0.049)
and ROI 4 (p = 0.029). The uncemented Oxford medial compartment arthroplasty appears
to allow relative preservation of the BMC and BMD of the proximal
tibia, suggesting that the implant acts more physiologically than
total knee replacement. Peri-prosthetic bone loss is an important
factor in assessing long-term implant stability and survival, and
the results of this study are encouraging for the long-term outcome
of this arthroplasty. Cite this article:
Current analysis of unicondylar knee replacements
(UKRs) by national registries is based on the pooled results of medial
and lateral implants. Consequently, little is known about the differential
performance of medial and lateral replacements and the influence
of each implant type within these pooled analyses. Using data from
the National Joint Registry for England and Wales (NJR) we aimed
to determine the proportion of UKRs implanted on the lateral side
of the knee, and their survival and reason for failure compared
with medial UKRs. By combining information on the side of operation
with component details held on the NJR, we were able to determine
implant laterality (medial
The purpose of this study was to measure the
radiological parameters of femoral component alignment of the Oxford
Phase 3 unicompartmental knee replacement (UKR), and evaluate their
effect on clinical outcome. Multiple regression analysis was used
to examine the relative contributions of the radiological assessment
of femoral component alignment in 189 consecutive UKRs performed
by a single surgeon. The American Knee Society scores were compared
between groups, defined as being within or outside recommended tolerances
of the position of the femoral component. For the flexion/extension
position 21 UKRs (11.1%) lay outside the recommended limits, and for
posterior overhang of the femoral component nine (4.8%) lay outside
the range. The pre-operative hip/knee/ankle (HKA) angle, narrowest
canal distance from the distal femoral entry point of the alignment
jig and coronal entry-point position had significant effects on
the flexion/extension position. Pre-operative HKA angle had a significant
influence on posterior overhang of the femoral component. However,
there was no significant difference in American Knee Society scores
relative to the position of the femoral component.
We carried out a prospective investigation into
the radiological outcomes of uncemented Oxford medial compartment
unicondylar replacement in 220 consecutive patients (231 knees)
performed in a single centre with a minimum two-year follow-up.
The functional outcomes using the mean Oxford knee score and the
mean high-activity arthroplasty score were significantly improved
over the pre-operative scores (p <
0.001). There were 196 patients
with a two-year radiological examination performed under fluoroscopic
guidance, aiming to provide images acceptable for analysis of the
bone–implant interface. Of the six tibial zones examined on each
knee on the anteroposterior radiograph, only three had a partial
radiolucent line. All were in the medial aspect of the tibial base plate
(zone 1) and all measured <
1 mm. All of these patients were
asymptomatic. There were no radiolucent lines seen around the femoral
component or on the lateral view. There was one revision for loosening
at one year due to initial inadequate seating of the tibial component.
These results confirm that the early uncemented Oxford medial unicompartmental
compartmental knee replacements were reliable and the incidence
of radiolucent lines was significantly decreased compared with the
reported results of cemented versions of this implant. These independent
results confirm those of the designing centre.
The lateral compartment is predominantly affected
in approximately 10% of patients with osteoarthritis of the knee. The
anatomy, kinematics and loading during movement differ considerably
between medial and lateral compartments of the knee. This in the
main explains the relative protection of the lateral compartment
compared with the medial compartment in the development of osteoarthritis.
The aetiology of lateral compartment osteoarthritis can be idiopathic,
usually affecting the femur, or secondary to trauma commonly affecting
the tibia. Surgical management of lateral compartment osteoarthritis
can include osteotomy, unicompartmental knee replacement and total
knee replacement. This review discusses the biomechanics, pathogenesis
and development of lateral compartment osteoarthritis and its management. Cite this article: