Advertisement for orthosearch.org.uk
Results 21 - 40 of 144
Results per page:
Bone & Joint Research
Vol. 8, Issue 11 | Pages 563 - 569
1 Nov 2019
Koh Y Lee J Lee H Kim H Kang K

Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty with isolated medial or lateral compartment osteoarthritis. However, polyethylene wear can significantly reduce the lifespan of UKA. Different bearing designs and materials for UKA have been developed to change the rate of polyethylene wear. Therefore, the objective of this study is to investigate the effect of insert conformity and material on the predicted wear in mobile-bearing UKA using a previously developed computational wear method. Methods. Two different designs were tested with the same femoral component under identical kinematic input: anatomy mimetic design (AMD) and conforming design inserts with different conformity levels. The insert materials were standard or crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). We evaluated the contact pressure, contact area, wear rate, wear depth, and volumetric wear under gait cycle loading conditions. Results. Conforming design inserts had the lower contact pressure and larger contact area. However, they also had the higher wear rate and volumetric wear. The improved wear performance was found with AMD inserts. In addition, the computationally predicted volumetric wear of crosslinked UHMWPE inserts was less than half that of standard UHMWPE inserts. Conclusion. Our results showed that increasing conformity may not be the sole predictor of wear performance; highly crosslinked mobile-bearing polyethylene inserts can also provide improvement in wear performance. These results provide improvements in design and materials to reduce wear in mobile-bearing UKA. Cite this article: Bone Joint Res 2019;8:563–569


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 91 - 95
1 Jun 2020
Johnson, Jr. WB Engh, Jr. CA Parks NL Hamilton WG Ho PH Fricka KB

Aims. It has been hypothesized that a unicompartmental knee arthroplasty (UKA) is more likely to be revised than a total knee arthroplasty (TKA) because conversion surgery to a primary TKA is a less complicated procedure. The purpose of this study was to determine if there is a lower threshold for revising a UKA compared with TKA based on Oxford Knee Scores (OKSs) and range of movement (ROM) at the time of revision. Methods. We retrospectively reviewed 619 aseptic revision cases performed between December 1998 and October 2018. This included 138 UKAs that underwent conversion to TKA and 481 initial TKA revisions. Age, body mass index (BMI), time in situ, OKS, and ROM were available for all patients. Results. There were no differences between the two groups based on demographics or time to revision. The top reasons for aseptic TKA revision were loosening in 212 (44%), instability in 88 (18%), and wear in 69 (14%). UKA revision diagnoses were primarily for loosening in 50 (36%), progression of osteoarthritis (OA) in 50 (36%), and wear in 17 (12%). Out of a maximum 48 points, the mean OKS of the UKAs before revision was 23 (SD 9.3), which was significantly higher than the TKAs at 19.2 (SD 9.8; p < 0.001). UKA patients scored statistically better on nine of the 12 individual OKS questions. The UKA cases also had a larger pre-revision mean ROM (114°, SD 14.3°) than TKAs (98°, SD 25°) ; p < 0.001). Conclusion. At revision, the mean UKA OKSs and ROM were significantly better than those of TKA cases. This study suggests that at our institution there is a difference in preoperative OKS between UKA and TKA at the time of revision, demonstrating a revision bias. Cite this article: Bone Joint J 2020;102-B(6 Supple A):91–95


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 34 - 44
1 Jan 2022
Beckers L Dandois F Ooms D Berger P Van Laere K Scheys L Vandenneucker H

Aims. Higher osteoblastic bone activity is expected in aseptic loosening and painful unicompartmental knee arthroplasty (UKA). However, insights into normal bone activity patterns after medial UKAs are lacking. The aim of this study was to identify the evolution in bone activity pattern in well-functioning medial mobile-bearing UKAs. Methods. In total, 34 patients (13 female, 21 male; mean age 62 years (41 to 79); BMI 29.7 kg/m. 2. (23.6 to 42.1)) with 38 medial Oxford partial UKAs (20 left, 18 right; 19 cementless, 14 cemented, and five hybrid) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively, and at one and two years postoperatively. Changes in mean osteoblastic activity were investigated using a tracer localization scheme with volumes of interest (VOIs), reported by normalized mean tracer values. A SPECT/CT registration platform additionally explored cortical tracer evolution in zones of interest identified by previous experimental research. Results. Significant reduction of tracer activity from the preoperative situation was found in femoral and anteromedial tibial VOIs adjacent to the UKA components. Temporarily increased osteoblastic bone activity was observed in VOIs comprising the UKA keel structure at one year postoperatively compared to the preoperative activity. Persistent higher tracer uptake was found in the posterior tibial cortex at final follow-up. Multivariate analysis showed no statistical difference in osteoblastic bone activity underneath cemented or cementless components. Conclusion. Well-functioning medial mobile-bearing UKAs showed distinct changes in patterns of normalized bone tracer activity in the different VOIs adjacent to the prosthetic components, regardless of their type of fixation. Compared to the preoperative situation, persistent high bone activity was found underneath the keel and the posterior tibial cortex at final follow-up, with significant reduced activity only being identified in femoral and anteromedial tibial VOIs. Cite this article: Bone Joint J 2022;104-B(1):34–44


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1167 - 1175
14 Sep 2020
Gromov K Petersen PB Jørgensen CC Troelsen A Kehlet H

Aims. The aim of this prospective multicentre study was to describe trends in length of stay and early complications and readmissions following unicompartmental knee arthroplasty (UKA) performed at eight different centres in Denmark using a fast-track protocol and to compare the length of stay between centres with high and low utilization of UKA. Methods. We included data from eight dedicated fast-track centres, all reporting UKAs to the same database, between 2010 and 2018. Complete ( > 99%) data on length of stay, 90-day readmission, and mortality were obtained during the study period. Specific reasons for a length of stay of > two days, length of stay > four days, and 30- and 90-day readmission were recorded. The use of UKA in the different centres was dichotomized into ≥ 20% versus < 20% of arthroplasties which were undertaken being UKAs, and ≥ 52 UKAs versus < 52 UKAs being undertaken annually. Results. A total of 3,927 procedures were included. Length of stay (mean 1.1 days (SD 1.1), median 1 (IQR 0 to 1)) was unchanged during the study period. The proportion of procedures with a length of stay > two days was also largely unchanged during this time. The percentage of patients discharged on the day of surgery varied greatly between centres (0% to 50% (0 to 481)), with centres with high UKA utilization (both usage and volume) having a larger proportion of same-day discharges. The 30- and 90-day readmissions were 166 (4.2%) and 272 (6.9%), respectively; the 90-day mortality was 0.08% (n = 3). Conclusion. Our findings suggest general underutilization of the potential for quicker recovery following UKA in a fast-track setup. Cite this article: Bone Joint J 2020;102-B(9):1167–1175


The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1063 - 1070
1 Sep 2019
Clement ND Deehan DJ Patton JT

Aims. The primary aim of the study was to perform an analysis to identify the cost per quality-adjusted life-year (QALY) of robot-assisted unicompartmental knee arthroplasty (rUKA) relative to manual total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA) for patients with isolated medial compartment osteoarthritis (OA) of the knee. Secondary aims were to assess how case volume and length of hospital stay influenced the relative cost per QALY. Patients and Methods. A Markov decision analysis was performed, using known parameters for costs, outcomes, implant survival, and mortality, to assess the cost-effectiveness of rUKA relative to manual TKA and UKA for patients with isolated medial compartment OA of the knee with a mean age of 65 years. The influence of case volume and shorter hospital stay were assessed. Results. Using a model with an annual case volume of 100 patients, the cost per QALY of rUKA was £1395 and £1170 relative to TKA and UKA, respectively. The cost per QALY was influenced by case volume: a low-volume centre performing ten cases per year would achieve a cost per QALY of £7170 and £8604 relative to TKA and UKA. For a high-volume centre performing 200 rUKAs per year with a mean two-day length of stay, the cost per QALY would be £648; if performed as day-cases, the cost would be reduced to £364 relative to TKA. For a high-volume centre performing 200 rUKAs per year with a shorter length of stay of one day relative to manual UKA, the cost per QALY would be £574. Conclusion . rUKA is a cost-effective alternative to manual TKA and UKA for patients with isolated medial compartment OA of the knee. The cost per QALY of rUKA decreased with reducing length of hospital stay and with increasing case volume, compared with TKA and UKA. Cite this article: Bone Joint J 2019;101-B:1063–1070


Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty for patients who require treatment of single-compartment osteoarthritis, especially for young patients. To satisfy this requirement, new patient-specific prosthetic designs have been introduced. The patient-specific UKA is designed on the basis of data from preoperative medical images. In general, knee implant design with increased conformity has been developed to provide lower contact stress and reduced wear on the tibial insert compared with flat knee designs. The different tibiofemoral conformity may provide designers the opportunity to address both wear and kinematic design goals simultaneously. The aim of this study was to evaluate wear prediction with respect to tibiofemoral conformity design in patient-specific UKA under gait loading conditions by using a previously validated computational wear method. Methods. Three designs with different conformities were developed with the same femoral component: a flat design normally used in fixed-bearing UKA, a tibia plateau anatomy mimetic (AM) design, and an increased conforming design. We investigated the kinematics, contact stress, contact area, wear rate, and volumetric wear of the three different tibial insert designs. Results. Conforming increased design showed a lower contact stress and increased contact area. In addition, increased conformity resulted in a reduction of the wear rate and volumetric wear. However, the increased conformity design showed limited kinematics. Conclusion. Our results indicated that increased conformity provided improvements in wear but resulted in limited kinematics. Therefore, increased conformity should be avoided in fixed-bearing patient-specific UKA design. We recommend a flat or plateau AM tibial insert design in patient-specific UKA. Cite this article: Y-G. Koh, K-M. Park, H-Y. Lee, K-T. Kang. Influence of tibiofemoral congruency design on the wear of patient-specific unicompartmental knee arthroplasty using finite element analysis. Bone Joint Res 2019;8:156–164. DOI: 10.1302/2046-3758.83.BJR-2018-0193.R1


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1033 - 1040
1 Aug 2020
Kennedy JA Mohammad HR Yang I Mellon SJ Dodd CAF Pandit HG Murray DW

Aims. To report mid- to long-term results of Oxford mobile bearing domed lateral unicompartmental knee arthroplasty (UKA), and determine the effect of potential contraindications on outcome. Methods. A total of 325 consecutive domed lateral UKAs undertaken for the recommended indications were included, and their functional and survival outcomes were assessed. The effects of age, weight, activity, and the presence of full-thickness erosions of cartilage in the patellofemoral joint on outcome were evaluated. Results. Median follow-up was seven years (3 to 14), and mean age at surgery was 65 years (39 to 90). Median Oxford Knee Score (OKS) was 43 (interquartile range (IQR) 37 to 47), with 260 (80%) achieving a good or excellent score (OKS > 34). Revisions occurred in 34 (10%); 14 (4%) were for dislocation, of which 12 had no recurrence following insertion of a new bearing, and 12 (4%) were revised for medial osteoarthritis (OA). Ten-year survival was 85% (95% confidence interval (CI) 79 to 90, at risk 72). Age, weight, activity, and patellofemoral erosions did not have a significant effect on the clinical outcome or survival. Conclusion. Domed lateral UKA provides a good alternative to total knee arthroplasty (TKA) in the management of lateral compartment OA. Although dislocation is relatively easy to treat successfully, the dislocation rate of 4% is high. It is recommended that the stability of the bearing is assessed intraoperatively. If the bearing can easily be displaced, the fixed rather than the mobile bearing version of the Oxford lateral tibial component should be inserted instead. Younger age, heavier weight, high activity, and patellofemoral erosions did not detrimentally affect outcome, so should not be considered contraindications. Cite this article: Bone Joint J 2020;102-B(8):1033–1040


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1088 - 1095
1 Jun 2021
Banger M Doonan J Rowe P Jones B MacLean A Blyth MJB

Aims. Unicompartmental knee arthroplasty (UKA) is a bone-preserving treatment option for osteoarthritis localized to a single compartment in the knee. The success of the procedure is sensitive to patient selection and alignment errors. Robotic arm-assisted UKA provides technological assistance to intraoperative bony resection accuracy, which is thought to improve ligament balancing. This paper presents the five-year outcomes of a comparison between manual and robotically assisted UKAs. Methods. The trial design was a prospective, randomized, parallel, single-centre study comparing surgical alignment in patients undergoing UKA for the treatment of medial compartment osteoarthritis (ISRCTN77119437). Participants underwent surgery using either robotic arm-assisted surgery or conventional manual instrumentation. The primary outcome measure (surgical accuracy) has previously been reported, and, along with secondary outcomes, were collected at one-, two-, and five-year timepoints. Analysis of five-year results and longitudinal analysis for all timepoints was performed to compare the two groups. Results. Overall, 104 (80%) patients of the original 130 who received surgery were available at five years (55 robotic, 49 manual). Both procedures reported successful results over all outcomes. At five years, there were no statistical differences between the groups in any of the patient reported or clinical outcomes. There was a lower reintervention rate in the robotic arm-assisted group with 0% requiring further surgery compared with six (9%) of the manual group requiring additional surgical intervention (p < 0.001). Conclusion. This study has shown excellent clinical outcomes in both groups with no statistical or clinical differences in the patient-reported outcome measures. The notable difference was the lower reintervention rate at five years for roboticarm-assisted UKA when compared with a manual approach. Cite this article: Bone Joint J 2021;103-B(6):1088–1095


Bone & Joint Research
Vol. 10, Issue 1 | Pages 1 - 9
1 Jan 2021
Garner A Dandridge O Amis AA Cobb JP van Arkel RJ

Aims. Unicompartmental knee arthroplasty (UKA) and bicompartmental knee arthroplasty (BCA) have been associated with improved functional outcomes compared to total knee arthroplasty (TKA) in suitable patients, although the reason is poorly understood. The aim of this study was to measure how the different arthroplasties affect knee extensor function. Methods. Extensor function was measured for 16 cadaveric knees and then retested following the different arthroplasties. Eight knees underwent medial UKA then BCA, then posterior-cruciate retaining TKA, and eight underwent the lateral equivalents then TKA. Extensor efficiency was calculated for ranges of knee flexion associated with common activities of daily living. Data were analyzed with repeated measures analysis of variance (α = 0.05). Results. Compared to native, there were no reductions in either extension moment or efficiency following UKA. Conversion to BCA resulted in a small decrease in extension moment between 70° and 90° flexion (p < 0.05), but when examined in the context of daily activity ranges of flexion, extensor efficiency was largely unaffected. Following TKA, large decreases in extension moment were measured at low knee flexion angles (p < 0.05), resulting in 12% to 43% reductions in extensor efficiency for the daily activity ranges. Conclusion. This cadaveric study found that TKA resulted in inferior extensor function compared to UKA and BCA. This may, in part, help explain the reported differences in function and satisfaction differences between partial and total knee arthroplasty. Cite this article: Bone Joint Res 2021;10(1):1–9


The Bone & Joint Journal
Vol. 102-B, Issue 6 | Pages 727 - 735
1 Jun 2020
Burger JA Dooley MS Kleeblad LJ Zuiderbaan HA Pearle AD

Aims. It remains controversial whether patellofemoral joint pathology is a contraindication to lateral unicompartmental knee arthroplasty (UKA). This study aimed to evaluate the effect of preoperative radiological degenerative changes and alignment on patient-reported outcome scores (PROMs) after lateral UKA. Secondarily, the influence of lateral UKA on the alignment of the patellofemoral joint was studied. Methods. A consecutive series of patients who underwent robotic arm-assisted fixed-bearing lateral UKA with at least two-year follow-up were retrospectively reviewed. Radiological evaluation was conducted to obtain a Kellgren Lawrence (KL) grade, an Altman score, and alignment measurements for each knee. Postoperative PROMs were assessed using the Kujala (Anterior Knee Pain Scale) score, Knee Injury and Osteoarthritis Outcome Score Joint Replacement (KOOS JR), and satisfaction levels. Results. A total of 140 knees (130 patients) were identified for analysis. At mean 4.1 years (2.0 to 8.5) follow-up, good to excellent Kujala scores were reported. The presence of mild to moderate preoperative patellofemoral joint osteoarthritis had no impact on these scores (KL grade 0 vs 1 to 3, p = 0.203; grade 0 to 1 vs 2 to 3, p = 0.674). Comparable scores were reported by patients with osteoarthritis (Altman score of ≥ 2) evident on either the medial or lateral patellofemoral joint facet (medial, p = 0.600 and lateral, p = 0.950). Patients with abnormal patellar congruence and tilt angles (≥ 17° and ≥ 14°, respectively) reported good to excellent Kujala scores. Furthermore, lateral UKA resulted in improvements to patellofemoral alignment. Conclusion. This is the first study demonstrating that mild to moderate preoperative radiological degenerative changes and malalignment of the patellofemoral joint are not associated with poor patient-reported outcomes at mid-term follow-up after lateral fixed-bearing UKA. Our data suggest that this may be explained by realignment of the patella and thereby redistribution of loads across the patellofemoral joint. Cite this article: Bone Joint J 2020;102-B(6):727–735


Bone & Joint Open
Vol. 2, Issue 1 | Pages 48 - 57
19 Jan 2021
Asokan A Plastow R Kayani B Radhakrishnan GT Magan AA Haddad FS

Cementless knee arthroplasty has seen a recent resurgence in popularity due to conceptual advantages, including improved osseointegration providing biological fixation, increased surgical efficiency, and reduced systemic complications associated with cement impaction and wear from cement debris. Increasingly younger and higher demand patients are requiring knee arthroplasty, and as such, there is optimism cementless fixation may improve implant survivorship and functional outcomes. Compared to cemented implants, the National Joint Registry (NJR) currently reports higher revision rates in cementless total knee arthroplasty (TKA), but lower in unicompartmental knee arthroplasty (UKA). However, recent studies are beginning to show excellent outcomes with cementless implants, particularly with UKA which has shown superior performance to cemented varieties. Cementless TKA has yet to show long-term benefit, and currently performs equivalently to cemented in short- to medium-term cohort studies. However, with novel concepts including 3D-printed coatings, robotic-assisted surgery, radiostereometric analysis, and kinematic or functional knee alignment principles, it is hoped they may help improve the outcomes of cementless TKA in the long-term. In addition, though cementless implant costs remain higher due to novel implant coatings, it is speculated cost-effectiveness can be achieved through greater surgical efficiency and potential reduction in revision costs. There is paucity of level one data on long-term outcomes between fixation methods and the cost-effectiveness of modern cementless knee arthroplasty. This review explores recent literature on cementless knee arthroplasty, with regards to clinical outcomes, implant survivorship, complications, and cost-effectiveness; providing a concise update to assist clinicians on implant choice. Cite this article: Bone Jt Open 2021;2(1):48–57


The Bone & Joint Journal
Vol. 101-B, Issue 1 | Pages 24 - 33
1 Jan 2019
Kayani B Konan S Tahmassebi J Rowan FE Haddad FS

Aims. The objectives of this study were to compare postoperative pain, analgesia requirements, inpatient functional rehabilitation, time to hospital discharge, and complications in patients undergoing conventional jig-based unicompartmental knee arthroplasty (UKA) versus robotic-arm assisted UKA. Patients and Methods. This prospective cohort study included 146 patients with symptomatic medial compartment knee osteoarthritis undergoing primary UKA performed by a single surgeon. This included 73 consecutive patients undergoing conventional jig-based mobile bearing UKA, followed by 73 consecutive patients receiving robotic-arm assisted fixed bearing UKA. All surgical procedures were performed using the standard medial parapatellar approach for UKA, and all patients underwent the same postoperative rehabilitation programme. Postoperative pain scores on the numerical rating scale and opiate analgesia consumption were recorded until discharge. Time to attainment of predefined functional rehabilitation outcomes, hospital discharge, and postoperative complications were recorded by independent observers. Results. Robotic-arm assisted UKA was associated with reduced postoperative pain (p < 0.001), decreased opiate analgesia requirements (p < 0.001), shorter time to straight leg raise (p < 0.001), decreased number of physiotherapy sessions (p < 0.001), and increased maximum knee flexion at discharge (p < 0.001) compared with conventional jig-based UKA. Mean time to hospital discharge was reduced in robotic UKA compared with conventional UKA (42.5 hours (. sd 5.9). vs 71.1 hours (. sd. 14.6), respectively; p < 0.001). There was no difference in postoperative complications between the two groups within 90 days’ follow-up. Conclusion. Robotic-arm assisted UKA was associated with decreased postoperative pain, reduced opiate analgesia requirements, improved early functional rehabilitation, and shorter time to hospital discharge compared with conventional jig-based UKA


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 103 - 110
1 Jul 2021
Chalmers BP Lebowitz JS Chiu Y Joseph AD Padgett DE Bostrom MPG Gonzalez Della Valle A

Aims. Due to the opioid epidemic in the USA, our service progressively decreased the number of opioid tablets prescribed at discharge after primary hip (THA) and knee (TKA) arthroplasty. The goal of this study was to analyze the effect on total morphine milligram equivalents (MMEs) prescribed and post-discharge opioid repeat prescriptions. Methods. We retrospectively reviewed 19,428 patients undergoing a primary THA or TKA between 1 February 2016 and 31 December 2019. Two reductions in the number of opioid tablets prescribed at discharge were implemented over this time; as such, we analyzed three periods (P1, P2, and P3) with different routine discharge MME (750, 520, and 320 MMEs, respectively). We investigated 90-day refill rates, refill MMEs, and whether discharge MMEs were associated with represcribing in a multivariate model. Results. A discharge prescription of < 400 MMEs was not a risk factor for opioid represcribing in the entire population (p = 0.772) or in opioid-naïve patients alone (p = 0.272). Procedure type was the most significant risk factor for narcotic represcribing, with unilateral TKA (hazard ratio (HR) = 5.62), bilateral TKA (HR = 6.32), and bilateral unicompartmental knee arthroplasty (UKA) (HR = 5.29) (all p < 0.001) being the highest risk for refills. For these three procedures, there was approximately a 5% to 6% increase in refills from P1 to P3 (p < 0.001); however, there was no significant increase in refill rates after any hip arthroplasty procedures. Total MMEs prescribed were significantly reduced from P1 to P3 (p < 0.001), leading to the equivalent of nearly 500,000 fewer oxycodone 5 mg tablets prescribed. Conclusion. Decreasing opioids prescribed at discharge led to a statistically significant reduction in total MMEs prescribed. While the represcribing rate did not increase for any hip arthroplasty procedure, the overall refill rates increased by about 5% for most knee arthroplasty procedures. As such, we are now probably prescribing an appropriate amount of opioids at discharge for knee arthroplasty procedure, but further reductions may be possible for hip arthroplasty procedures. Cite this article: Bone Joint J 2021;103-B(7 Supple B):103–110


Bone & Joint Research
Vol. 7, Issue 1 | Pages 20 - 27
1 Jan 2018
Kang K Son J Suh D Kwon SK Kwon O Koh Y

Objectives. Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient’s own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA. Methods. The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs. Results. The contact stresses on the PE insert were similar for both the PS and standard UKAs. Compared with the standard UKA, the PS UKA did not show any biomechanical effect on the medial PE insert. However, the contact stresses on the articular cartilage and the meniscus in the lateral compartment following the PS UKA exhibited closer values to the healthy knee joint compared with the standard UKA. Conclusion. The PS UKA provided mechanics closer to those of the normal knee joint. The decreased contact stress on the opposite compartment may reduce the overall risk of progressive osteoarthritis. Cite this article: K-T. Kang, J. Son, D-S. Suh, S. K. Kwon, O-R. Kwon, Y-G. Koh. Patient-specific medial unicompartmental knee arthroplasty has a greater protective effect on articular cartilage in the lateral compartment: A Finite Element Analysis. Bone Joint Res 2018;7:20–27. DOI: 10.1302/2046-3758.71.BJR-2017-0115.R2


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 435 - 442
1 Apr 2019
Zambianchi F Franceschi G Rivi E Banchelli F Marcovigi A Nardacchione R Ensini A Catani F

Aims. The purpose of this multicentre observational study was to investigate the association between intraoperative component positioning and soft-tissue balancing on short-term clinical outcomes in patients undergoing robotic-arm assisted unicompartmental knee arthroplasty (UKA). Patients and Methods. Between 2013 and 2016, 363 patients (395 knees) underwent robotic-arm assisted UKAs at two centres. Pre- and postoperatively, patients were administered Knee Injury and Osteoarthritis Score (KOOS) and Forgotten Joint Score-12 (FJS-12). Results were stratified as “good” and “bad” if KOOS/FJS-12 were more than or equal to 80. Intraoperative, post-implantation robotic data relative to CT-based components placement were collected and classified. Postoperative complications were recorded. Results. Following exclusions and losses to follow-up, 334 medial robotic-arm assisted UKAs were assessed at a mean follow-up of 30.0 months (8.0 to 54.9). None of the measured parameters were associated with overall KOOS outcome. Correlations were described between specific KOOS subscales and intraoperative, post-implantation robotic data, and between FJS-12 and femoral component sagittal alignment. Three UKAs were revised, resulting in 99.0% survival at two years (95% confidence interval (CI) 97.9 to 100.0). Conclusion. Although little correlation was found between intraoperative robotic data and overall clinical outcome, surgeons should consider information regarding 3D component placement and soft-tissue balancing to improve patient satisfaction. Reproducible and precise placement of components has been confirmed as essential for satisfactory clinical outcome. Cite this article: Bone Joint J 2019;101-B:435–442


Bone & Joint Research
Vol. 8, Issue 3 | Pages 126 - 135
1 Mar 2019
Sekiguchi K Nakamura S Kuriyama S Nishitani K Ito H Tanaka Y Watanabe M Matsuda S

Objectives. Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. Methods. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle. Results. The femur was positioned more medially relative to the tibia, with increasing varus alignment of the tibial component. Medial/lateral (ML) translation was smallest in the 2° varus model. A greater posterior slope posteriorized the medial condyle and increased anterior cruciate ligament (ACL) tension. ML translation was increased in the > 7° posterior slope model and the 0° model. Conclusion. The current study suggests that the preferred tibial component alignment is between neutral and 2° varus in the coronal plane, and between 3° and 7° posterior slope in the sagittal plane. Varus > 4° or valgus alignment and excessive posterior slope caused excessive ML translation, which could be related to feelings of instability and could potentially have negative effects on clinical outcomes and implant durability. Cite this article: K. Sekiguchi, S. Nakamura, S. Kuriyama, K. Nishitani, H. Ito, Y. Tanaka, M. Watanabe, S. Matsuda. Bone Joint Res 2019;8:126–135. DOI: 10.1302/2046-3758.83.BJR-2018-0208.R2


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 407 - 413
1 Apr 2020
Vermue H Lambrechts J Tampere T Arnout N Auvinet E Victor J

The application of robotics in the operating theatre for knee arthroplasty remains controversial. As with all new technology, the introduction of new systems might be associated with a learning curve. However, guidelines on how to assess the introduction of robotics in the operating theatre are lacking. This systematic review aims to evaluate the current evidence on the learning curve of robot-assisted knee arthroplasty. An extensive literature search of PubMed, Medline, Embase, Web of Science, and Cochrane Library was conducted. Randomized controlled trials, comparative studies, and cohort studies were included. Outcomes assessed included: time required for surgery, stress levels of the surgical team, complications in regard to surgical experience level or time needed for surgery, size prediction of preoperative templating, and alignment according to the number of knee arthroplasties performed. A total of 11 studies met the inclusion criteria. Most were of medium to low quality. The operating time of robot-assisted total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA) is associated with a learning curve of between six to 20 cases and six to 36 cases respectively. Surgical team stress levels show a learning curve of seven cases in TKA and six cases for UKA. Experience with the robotic systems did not influence implant positioning, preoperative planning, and postoperative complications. Robot-assisted TKA and UKA is associated with a learning curve regarding operating time and surgical team stress levels. Future evaluation of robotics in the operating theatre should include detailed measurement of the various aspects of the total operating time, including total robotic time and time needed for preoperative planning. The prior experience of the surgical team should also be evaluated and reported. Cite this article: Bone Joint J 2020;102-B(4):407–413


Bone & Joint Research
Vol. 8, Issue 2 | Pages 55 - 64
1 Feb 2019
Danese I Pankaj P Scott CEH

Objectives. Elevated proximal tibial bone strain may cause unexplained pain, an important cause of unicompartmental knee arthroplasty (UKA) revision. This study investigates the effect of tibial component alignment in metal-backed (MB) and all-polyethylene (AP) fixed-bearing medial UKAs on bone strain, using an experimentally validated finite element model (FEM). Methods. A previously experimentally validated FEM of a composite tibia implanted with a cemented fixed-bearing UKA (MB and AP) was used. Standard alignment (medial proximal tibial angle 90°, 6° posterior slope), coronal malalignment (3°, 5°, 10° varus; 3°, 5° valgus), and sagittal malalignment (0°, 3°, 6°, 9°, 12°) were analyzed. The primary outcome measure was the volume of compressively overstrained cancellous bone (VOCB) < -3000 µε. The secondary outcome measure was maximum von Mises stress in cortical bone (MSCB) over a medial region of interest. Results. Varus malalignment decreased VOCB but increased MSCB in both implants, more so in the AP implant. Varus malalignment of 10° reduced the VOCB by 10% and 3% in AP and MB implants but increased the MSCB by 14% and 13%, respectively. Valgus malalignment of 5° increased the VOCB by 8% and 4% in AP and MB implants, with reductions in MSCB of 7% and 10%, respectively. Sagittal malalignment displayed negligible effects. Well-aligned AP implants displayed greater VOCB than malaligned MB implants. Conclusion. All-polyethylene implants are more sensitive to coronal plane malalignments than MB implants are; varus malalignment reduced cancellous bone strain but increased anteromedial cortical bone stress. Sagittal plane malalignment has a negligible effect on bone strain. Cite this article: I. Danese, P. Pankaj, C. E. H. Scott. The effect of malalignment on proximal tibial strain in fixed-bearing unicompartmental knee arthroplasty: A comparison between metal-backed and all-polyethylene components using a validated finite element model. Bone Joint Res 2019;8:55–64. DOI: 10.1302/2046-3758.82.BJR-2018-0186.R2


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 319 - 328
1 Mar 2020
St Mart J de Steiger RN Cuthbert A Donnelly W

Aim. There has been a significant reduction in unicompartmental knee arthroplasty (UKA) procedures recorded in Australia. This follows several national joint registry studies documenting high UKA revision rates when compared to total knee arthroplasty (TKA). With the recent introduction of robotically assisted UKA procedures, it is hoped that outcomes improve. This study examines the cumulative revision rate of UKA procedures implanted with a newly introduced robotic system and compares the results to one of the best performing non-robotically assisted UKA prostheses, as well as all other non-robotically assisted UKA procedures. Methods. Data from the Australian Orthopaedic Association National Joint Arthroplasty Registry (AOANJRR) for all UKA procedures performed for osteoarthritis (OA) between 2015 and 2018 were analyzed. Procedures using the Restoris MCK UKA prosthesis implanted using the Mako Robotic-Arm Assisted System were compared to non-robotically assisted Zimmer Unicompartmental High Flex Knee System (ZUK) UKA, a commonly used UKA with previously reported good outcomes and to all other non-robotically assisted UKA procedures using Cox proportional hazard ratios (HRs) and Kaplan-Meier estimates of survivorship. Results. There was no difference in the rate of revision when the Mako-assisted Restoris UKA was compared to the ZUK UKA (zero to nine months: HR 1.14 (95% CI 0.71 to 1.83; p = 0.596) vs nine months and over: HR 0.66 (95% CI 0.42 to 1.02; p = 0.058)). The Mako-assisted Restoris had a significantly lower overall revision rate compared to the other types of non-robotically assisted procedures (HR 0.58 (95% confidence interval (CI) 0.42 to 0.79); p < 0.001) at three years. Revision for aseptic loosening was lower for the Mako-assisted Restoris compared to all other non-robotically assisted UKA (entire period: HR 0.34 (95% CI 0.17 to 0.65); p = 0.001), but not the ZUK prosthesis. However, revision for infection was significantly higher for the Mako-assisted Restoris compared to the two comparator groups (ZUK: entire period: HR 2.91 (95% CI 1.22 to 6.98; p = 0.016); other non-robotically assisted UKA: zero to three months: HR 5.57 (95% CI 2.17 to 14.31; p < 0.001)). Conclusion. This study reports comparable short-term survivorship for the Mako robotically assisted UKA compared to the ZUK UKA and improved survivorship compared to all other non-robotic UKA. These results justify the continued use and investigation of this procedure. However, the higher rate of early revision for infection for robotically assisted UKA requires further investigation. Cite this article: Bone Joint J 2020;102-B(3):319–328


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 22 - 27
1 Jul 2019
Kalbian IL Tan TL Rondon AJ Bonaddio VA Klement MR Foltz C Lonner JH

Aims. Unicompartmental knee arthroplasty (UKA) provides improved early functional outcomes and less postoperative morbidity and pain compared with total knee arthroplasty (TKA). Opioid prescribing has increased in the last two decades, and recently states in the USA have developed online Prescription Drug Monitoring Programs to prevent overprescribing of controlled substances. This study evaluates differences in opioid requirements between patients undergoing TKA and UKA. Patients and Methods. We retrospectively reviewed 676 consecutive TKAs and 241 UKAs. Opioid prescriptions in morphine milligram equivalents (MMEs), sedatives, benzodiazepines, and stimulants were collected from State Controlled Substance Monitoring websites six months before and nine months after the initial procedures. Bivariate and multivariate analysis were performed for patients who had a second prescription and continued use. Results. Patients undergoing UKA had a second opioid prescription filled 50.2% of the time, compared with 60.5% for TKA (p = 0.006). After controlling for potential confounders, patients undergoing UKA were still less likely to require a second prescription than those undergoing TKA (adjusted odds ratio (OR) 0.58, 95% confidence interval (CI) 0.42 to 0.81; p = 0.001). Continued opioid use requiring more than five prescriptions occurred in 13.7% of those undergoing TKA and 5.8% for those undergoing UKA (p = 0.001), and was also reduced in UKA patients compared with TKA patients (adjusted OR 0.33, 95% CI 0.16 to 0.67; p = 0.022) in multivariate analysis. The continued use of opioids after six months was 11.8% in those undergoing TKA and 8.3% in those undergoing UKA (p = 0.149). The multivariate models for second prescriptions, continued use with more than five, and continued use beyond six months yielded concordance scores of 0.70, 0.86, and 0.83, respectively. Conclusion. Compared with TKA, patients undergoing UKA are less likely to require a second opioid prescription and use significantly fewer opioid prescriptions. Thus, orthopaedic surgeons should adjust their patterns of prescription and educate patients about the reduced expected analgesic requirements after UKA compared with TKA. Cite this article: Bone Joint J 2019;101-B(7 Supple C):22–27