The December 2023
The April 2024
The April 2023
The December 2024
The December 2022
The October 2024
Aims. Fractures of the distal radius are common, and form a considerable proportion of the
Aims. Open lower limb fracture is a life-changing injury affecting 11.5 per 100,000 adults each year, and causes significant morbidity and resource demand on
Aims. This is a multicentre, prospective assessment of a proportion of the overall
Aims. The evidence demonstrating the superiority of early MRI has led to increased use of MRI in clinical pathways for acute wrist
Aims. Heterotopic ossification (HO) is a common complication after elbow
Aims. This study reviews the past 30 years of research from the Canadian
Aims. Hand
Aims. The purpose of this study was to determine the weightbearing practice of operatively managed fragility fractures in the setting of publically funded health services in the UK and Ireland. Methods. The Fragility Fracture Postoperative Mobilisation (FFPOM) multicentre audit included all patients aged 60 years and older undergoing surgery for a fragility fracture of the lower limb between 1 January 2019 and 30 June 2019, and 1 February 2021 and 14 March 2021. Fractures arising from high-energy transfer
This brief annotation summarises the particular contributions made by the annual Edinburgh International
Aims. Postoperative malalignment of the femur is one of the main complications in distal femur fractures. Few papers have investigated the impact of intraoperative malalignment on postoperative function and bone healing outcomes. The aim of this study was to investigate how intraoperative fracture malalignment affects postoperative bone healing and functional outcomes. Methods. In total, 140 patients were retrospectively identified from data obtained from a database of hospitals participating in a
Aims. Patient decision aids have previously demonstrated an improvement in the quality of the informed consent process. This study assessed the effectiveness of detailed written patient information, compared to standard verbal consent, in improving postoperative recall in adult
This study examined spinal fractures in patients
admitted to a Major
Aims. The number of convolutional neural networks (CNN) available for fracture detection and classification is rapidly increasing. External validation of a CNN on a temporally separate (separated by time) or geographically separate (separated by location) dataset is crucial to assess generalizability of the CNN before application to clinical practice in other institutions. We aimed to answer the following questions: are current CNNs for fracture recognition externally valid?; which methods are applied for external validation (EV)?; and, what are reported performances of the EV sets compared to the internal validation (IV) sets of these CNNs?. Methods. The PubMed and Embase databases were systematically searched from January 2010 to October 2020 according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The type of EV, characteristics of the external dataset, and diagnostic performance characteristics on the IV and EV datasets were collected and compared. Quality assessment was conducted using a seven-item checklist based on a modified Methodologic Index for NOn-Randomized Studies instrument (MINORS). Results. Out of 1,349 studies, 36 reported development of a CNN for fracture detection and/or classification. Of these, only four (11%) reported a form of EV. One study used temporal EV, one conducted both temporal and geographical EV, and two used geographical EV. When comparing the CNN’s performance on the IV set versus the EV set, the following were found: AUCs of 0.967 (IV) versus 0.975 (EV), 0.976 (IV) versus 0.985 to 0.992 (EV), 0.93 to 0.96 (IV) versus 0.80 to 0.89 (EV), and F1-scores of 0.856 to 0.863 (IV) versus 0.757 to 0.840 (EV). Conclusion. The number of externally validated CNNs in
Aims. The study objective was to prospectively assess clinical outcomes for a pilot cohort of tibial shaft fractures treated with a new tibial nailing system that produces controlled axial interfragmentary micromotion. The hypothesis was that axial micromotion enhances fracture healing compared to static interlocking. Methods. Patients were treated in a single level I