Advertisement for orthosearch.org.uk
Results 21 - 40 of 98
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 3 | Pages 418 - 422
1 May 1986
Roberts S Weightman B Urban J Chappell D

Articular cartilage from the femoral heads of 27 patients having an arthroplasty for subcapital fracture was studied, and its mechanical and chemical properties compared to those of a group of 33 age-matched macroscopically normal autopsy specimens. Water and proteoglycan contents were measured, as were swelling ability, compressive and tensile strength of the cartilage, and the density of the underlying bone. Cartilage from the fracture specimens had a significantly reduced proteoglycan content, as measured by fixed charge density, and increased swelling ability. These results indicate that this group differs from the "normal" population and care should be taken before they are accepted as control material for studies on osteoarthritic cartilage. Another finding was that bone density was much the same in the fracture and the normal group. This casts some doubt upon the concept that patients who sustain subcapital fractures are more osteoporotic than the average for the same age range


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 2 | Pages 282 - 287
1 Mar 2003
Kimura A Aoki M Fukushima S Ishii S Yamakoshi K

We reconstructed defects in the infraspinatus tendon using polytetrafluoroethylene (PTFE) felt grafts in 31 beagle dogs and examined the mechanical responses and histocompatibility. Except for one infected specimen, all the reconstructed infraspinatus tendons healed. We examined eight specimens each immediately after surgery and at six and 12 weeks. The ultimate tensile strength of the reconstructed tendons was 60.84 N, 172.88 N, and 306.51 N immediately after surgery and at six and 12 weeks, respectively. The stiffness of the specimens at the PTFE felt-bone interface was 9.61 kN/m, 64.67 kN/m, and 135.09 kN/m immediately after surgery and at six and 12 weeks, respectively. Six tendons were examined histologically at three, six, 12 and 24 weeks. Histological analysis showed that there was ingrowth of fibrous tissue between the PTFE fibres. Foreign-body reactions were found at the margin of the PTFE-bone interface between 12 and 24 weeks. The mechanical recovery and tissue affinity of PTFE felt to bone and to tendon support its use for reconstruction of the rotator cuff. The possible development of a foreign-body reaction should be borne in mind


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 2 | Pages 278 - 288
1 Mar 1986
Roberts S Weightman B Urban J Chappell D

We studied the mechanical and biochemical properties of articular cartilage from 22 osteoarthritic femoral heads obtained at operation and 97 femoral heads obtained at autopsy. Cartilage from the zenith and from the antero-inferior aspect of each head was tested both in tension and in compression. Water content, swelling ability and proteoglycan content were measured, the cartilage was examined histologically and the density of the underlying bone was assessed. Fifty-five of the autopsy specimens were defined as macroscopically normal because they exhibited no progressive fibrillation patterns on staining with Indian ink; but significant changes in water content, bone density and tensile strength related to age were seen in this group. In 20 pairs of femoral heads which were both macroscopically normal, we found, surprisingly, that cartilage from the left and right sides of the same patient was sometimes very different. Compared with the normal autopsy specimens the osteoarthritic specimens had a significantly increased swelling ability, a lower proteoglycan content and impaired mechanical properties, being both weaker in tension and softer in compression. Abnormal autopsy specimens had values intermediate between those of osteoarthritic and normal groups. Results from this abnormal group suggest that there is no primary loss of proteoglycan in early osteoarthritis


The Journal of Bone & Joint Surgery British Volume
Vol. 32-B, Issue 3 | Pages 396 - 402
1 Aug 1950
Jack EA

Rupture of a ligament usually occurs along a definite line, but is associated with considerable intrinsic damage to the remote parts of the ligament. In spite of this, healing occurs by regeneration of regular collagen to form a new ligament with good tensile strength, provided the ends of the torn ligament are in reasonable apposition, and provided the blood supply is adequate. When lateral instability of the knee after a recent injury suggests that a collateral ligament has been ruptured, wide displacement of the torn ends should be suspected. Accurate replacement can be guaranteed only by surgical intervention; operative repair therefore seems to be justifiable on anatomical grounds. If operation is contemplated it should be undertaken within the first week after injury when it is easy to achieve accurate repair, which later becomes impossible because of shrinkage and friability of the tissue. In order to preserve blood supply, the areolar covering should be disturbed as little as possible, and the least possible amount of fine suture material should be used to anchor the torn ends in position. Nevertheless when the tear involves the upper attachment, ischaemia of the damaged ligament may prevent normal healing, whatever the treatment adopted


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 7 | Pages 1072 - 1076
1 Sep 2004
Tien Y Chih T Lin JC Ju C Lin S

The healing of a hamstring graft to bone is the weak link in the reconstruction of a cruciate ligament using this donor material. We therefore investigated the augmentation of healing at the tendon-bone interface using calcium-phosphate cement (CPC). We performed semitendinosus autograft reconstructions of the anterior cruciate ligament on both knees of 22 New Zealand white rabbits. The interface between the grafted tendon and the bone tunnel for one knee was filled with CPC. Six rabbits were killed at the end of the first and second post-operative weeks in order to evaluate the biomechanical changes. Two rabbits were then killed sequentially at the end of weeks 1, 3, 6, 12 and 24 after operation and tissue removed for serial histological observation. Histological examination showed that the use of CPC produced early, diffuse and massive bone ingrowth. By contrast, in the non-CPC group of rabbits only a thin layer of new bone was seen. Mechanical pull-out testing at one week showed that the mean maximal tensile strength was 6.505 ± 1.333 N for the CPC group and 2.048 ± 0.950 N for the non-CPC group. At two weeks the values were 11.491 ± 2.865 N and 5.452 ± 3.955 N, respectively. Our findings indicate that CPC is a potentially promising material in clinical practice as regards its ability to reinforce the fixation of the tendon attachment to bone and to augment the overall effectiveness of tendon healing to bone


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 1 | Pages 26 - 31
1 Jan 1996
Senaha Y Nakamura T Tamura J Kawanabe K Iida H Yamamuro T

We have developed a bioactive bone cement (BA cement) consisting of Bis-GMA resin and bioactive glass powder. It has high compressive and tensile strengths, a low curing temperature and its bioactivity allows it to bond directly with bone. We operated on the 18 femora of nine mongrel dogs for intercalary replacement of part of the bone by a metal prosthesis using either PMMA cement or BA cement for fixation. Three dogs were killed at each of 4, 12 and 26 weeks after surgery for the evaluation of fixation strength by a push-out test and for histological examination by Giemsa surface staining and SEM. Fixation strengths with PMMA cement at 4, 12 and 26 weeks after surgery were 46.8 ± 18.9, 50.0 ± 24.7, and 58.2 ± 28.9 kgf (mean ±SD), respectively. Those with BA cement were 56.8 ± 26.1, 67.2 ± 19.2, and 72.8 ± 22.2 kgf, respectively. Fibrous tissue intervened between bone and PMMA cement but BA cement had bonded directly to bone at 12 and 26 weeks. This suggests that BA cement will be useful in providing long-lasting fixation of implants to bone under weight-bearing conditions


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 220 - 223
1 Mar 2024
Kayani B Luo TD Haddad FS


Bone & Joint Open
Vol. 5, Issue 2 | Pages 94 - 100
5 Feb 2024
Mancino F Kayani B Gabr A Fontalis A Plastow R Haddad FS

Anterior cruciate ligament (ACL) injuries are among the most common and debilitating knee injuries in professional athletes with an incidence in females up to eight-times higher than their male counterparts. ACL injuries can be career-threatening and are associated with increased risk of developing knee osteoarthritis in future life. The increased risk of ACL injury in females has been attributed to various anatomical, developmental, neuromuscular, and hormonal factors. Anatomical and hormonal factors have been identified and investigated as significant contributors including osseous anatomy, ligament laxity, and hamstring muscular recruitment. Postural stability and impact absorption are associated with the stabilizing effort and stress on the ACL during sport activity, increasing the risk of noncontact pivot injury. Female patients have smaller diameter hamstring autografts than males, which may predispose to increased risk of re-rupture following ACL reconstruction and to an increased risk of chondral and meniscal injuries. The addition of an extra-articular tenodesis can reduce the risk of failure; therefore, it should routinely be considered in young elite athletes. Prevention programs target key aspects of training including plyometrics, strengthening, balance, endurance and stability, and neuromuscular training, reducing the risk of ACL injuries in female athletes by up to 90%. Sex disparities in access to training facilities may also play an important role in the risk of ACL injuries between males and females. Similarly, football boots, pitches quality, and football size and weight should be considered and tailored around females’ characteristics. Finally, high levels of personal and sport-related stress have been shown to increase the risk of ACL injury which may be related to alterations in attention and coordination, together with increased muscular tension, and compromise the return to sport after ACL injury. Further investigations are still necessary to better understand and address the risk factors involved in ACL injuries in female athletes.

Cite this article: Bone Jt Open 2024;5(2):94–100.


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 516 - 521
1 Jun 2024
Al-Hourani K Haddad FS


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1265 - 1270
1 Dec 2023
Hurley ET Sherman SL Chahla J Gursoy S Alaia MJ Tanaka MJ Pace JL Jazrawi LM

Aims

The aim of this study was to establish consensus statements on medial patellofemoral ligament (MPFL) reconstruction, anteromedialization tibial tubercle osteotomy, trochleoplasty, and rehabilitation and return to sporting activity in patients with patellar instability, using the modified Delphi process.

Methods

This was the second part of a study dealing with these aspects of management in these patients. As in part I, a total of 60 surgeons from 11 countries contributed to the development of consensus statements based on their expertise in this area. They were assigned to one of seven working groups defined by subtopics of interest. Consensus was defined as achieving between 80% and 89% agreement, strong consensus was defined as between 90% and 99% agreement, and 100% agreement was considered unanimous.


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 315 - 322
1 Mar 2023
Geere JH Swamy GN Hunter PR Geere JL Lutchman LN Cook AJ Rai AS

Aims

To identify the incidence and risk factors for five-year same-site recurrent disc herniation (sRDH) after primary single-level lumbar discectomy. Secondary outcome was the incidence and risk factors for five-year sRDH reoperation.

Methods

A retrospective study was conducted using prospectively collected data and patient-reported outcome measures, including the Oswestry Disability Index (ODI), between 2008 and 2019. Postoperative sRDH was identified from clinical notes and the centre’s MRI database, with all imaging providers in the region checked for missing events. The Kaplan-Meier method was used to calculate five-year sRDH incidence. Cox proportional hazards model was used to identify independent variables predictive of sRDH, with any variable not significant at the p < 0.1 level removed. Hazard ratios (HRs) were calculated with 95% confidence intervals (CIs).


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 978 - 985
1 Sep 2024
Savoie III FH Delvadia BP Tate JP Winter JE Williams GH Sherman WF O’Brien MJ

Rotator cuff tears are common in middle-aged and elderly patients. Despite advances in the surgical repair of rotator cuff tears, the rates of recurrent tear remain high. This may be due to the complexity of the tendons of the rotator cuff, which contributes to an inherently hostile healing environment. During the past 20 years, there has been an increased interest in the use of biologics to complement the healing environment in the shoulder, in order to improve rotator cuff healing and reduce the rate of recurrent tears. The aim of this review is to provide a summary of the current evidence for the use of forms of biological augmentation when repairing rotator cuff tears.

Cite this article: Bone Joint J 2024;106-B(9):978–985.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 561 - 574
10 Aug 2022
Schulze-Tanzil GG Delgado Cáceres M Stange R Wildemann B Docheva D

Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors.

Cite this article: Bone Joint Res 2022;11(8):561–574.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 9 - 21
9 Jan 2023
Lu C Ho C Chen S Liu Z Chou PP Ho M Tien Y

Aims

The effects of remnant preservation on the anterior cruciate ligament (ACL) and its relationship with the tendon graft remain unclear. We hypothesized that the co-culture of remnant cells and bone marrow stromal cells (BMSCs) decreases apoptosis and enhances the activity of the hamstring tendons and tenocytes, thus aiding ACL reconstruction.

Methods

The ACL remnant, bone marrow, and hamstring tendons were surgically harvested from rabbits. The apoptosis rate, cell proliferation, and expression of types I and III collagen, transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), and tenogenic genes (scleraxis (SCX), tenascin C (TNC), and tenomodulin (TNMD)) of the hamstring tendons were compared between the co-culture medium (ACL remnant cells (ACLRCs) and BMSCs co-culture) and control medium (BMSCs-only culture). We also evaluated the apoptosis, cell proliferation, migration, and gene expression of hamstring tenocytes with exposure to co-culture and control media.


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 833 - 843
1 Jul 2022
Kayani B Baawa-Ameyaw J Fontalis A Tahmassebi J Wardle N Middleton R Stephen A Hutchinson J Haddad FS

Aims

This study reports the ten-year wear rates, incidence of osteolysis, clinical outcomes, and complications of a multicentre randomized controlled trial comparing oxidized zirconium (OxZr) versus cobalt-chrome (CoCr) femoral heads with ultra-high molecular weight polyethylene (UHMWPE) and highly cross-linked polyethylene (XLPE) liners in total hip arthroplasty (THA).

Methods

Patients undergoing primary THA were recruited from four institutions and prospectively allocated to the following treatment groups: Group A, CoCr femoral head with XLPE liner; Group B, OxZr femoral head with XLPE liner; and Group C, OxZr femoral head with UHMWPE liner. All study patients and assessors recording outcomes were blinded to the treatment groups. The outcomes of 262 study patients were analyzed at ten years’ follow-up.


Bone & Joint Research
Vol. 11, Issue 2 | Pages 102 - 111
1 Feb 2022
Jung C Cha Y Yoon HS Park CH Yoo J Kim J Jeon Y

Aims

In this study, we aimed to explore surgical variations in the Femoral Neck System (FNS) used for stable fixation of Pauwels type III femoral neck fractures.

Methods

Finite element models were established with surgical variations in the distance between the implant tip and subchondral bone, the gap between the plate and lateral femoral cortex, and inferior implant positioning. The models were subjected to physiological load.


Bone & Joint Research
Vol. 10, Issue 5 | Pages 298 - 306
1 May 2021
Dolkart O Kazum E Rosenthal Y Sher O Morag G Yakobson E Chechik O Maman E

Aims

Rotator cuff (RC) tears are common musculoskeletal injuries which often require surgical intervention. Noninvasive pulsed electromagnetic field (PEMF) devices have been approved for treatment of long-bone fracture nonunions and as an adjunct to lumbar and cervical spine fusion surgery. This study aimed to assess the effect of continuous PEMF on postoperative RC healing in a rat RC repair model.

Methods

A total of 30 Wistar rats underwent acute bilateral supraspinatus tear and repair. A miniaturized electromagnetic device (MED) was implanted at the right shoulder and generated focused PEMF therapy. The animals’ left shoulders served as controls. Biomechanical, histological, and bone properties were assessed at three and six weeks.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1281 - 1288
3 Oct 2020
Chang JS Kayani B Plastow R Singh S Magan A Haddad FS

Injuries to the hamstring muscle complex are common in athletes, accounting for between 12% and 26% of all injuries sustained during sporting activities. Acute hamstring injuries often occur during sports that involve repetitive kicking or high-speed sprinting, such as American football, soccer, rugby, and athletics. They are also common in watersports, including waterskiing and surfing. Hamstring injuries can be career-threatening in elite athletes and are associated with an estimated risk of recurrence in between 14% and 63% of patients. The variability in prognosis and treatment of the different injury patterns highlights the importance of prompt diagnosis with magnetic resonance imaging (MRI) in order to classify injuries accurately and plan the appropriate management.

Low-grade hamstring injuries may be treated with nonoperative measures including pain relief, eccentric lengthening exercises, and a graduated return to sport-specific activities. Nonoperative management is associated with highly variable times for convalescence and return to a pre-injury level of sporting function. Nonoperative management of high-grade hamstring injuries is associated with poor return to baseline function, residual muscle weakness and a high-risk of recurrence. Proximal hamstring avulsion injuries, high-grade musculotendinous tears, and chronic injuries with persistent weakness or functional compromise require surgical repair to enable return to a pre-injury level of sporting function and minimize the risk of recurrent injury.

This article reviews the optimal diagnostic imaging methods and common classification systems used to guide the treatment of hamstring injuries. In addition, the indications and outcomes for both nonoperative and operative treatment are analyzed to provide an evidence-based management framework for these patients.

Cite this article: Bone Joint J 2020;102-B(10):1281–1288.


Bone & Joint Research
Vol. 10, Issue 2 | Pages 105 - 112
1 Feb 2021
Feng X Qi W Fang CX Lu WW Leung FKL Chen B

Aims

To draw a comparison of the pullout strengths of buttress thread, barb thread, and reverse buttress thread bone screws.

Methods

Buttress thread, barb thread, and reverse buttress thread bone screws were inserted into synthetic cancellous bone blocks. Five screw-block constructs per group were tested to failure in an axial pullout test. The pullout strengths were calculated and compared. A finite element analysis (FEA) was performed to explore the underlying failure mechanisms. FEA models of the three different screw-bone constructs were developed. A pullout force of 250 N was applied to the screw head with a fixed bone model. The compressive and tensile strain contours of the midsagittal plane of the three bone models were plotted and compared.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 151 - 157
1 Jun 2020
Gil D Atici AE Connolly RL Hugard S Shuvaev S Wannomae KK Oral E Muratoglu OK

Aims

We propose a state-of-the-art temporary spacer, consisting of a cobalt-chrome (CoCr) femoral component and a gentamicin-eluting ultra-high molecular weight polyethylene (UHMWPE) tibial insert, which can provide therapeutic delivery of gentamicin, while retaining excellent mechanical properties. The proposed implant is designed to replace conventional spacers made from bone cement.

Methods

Gentamicin-loaded UHMWPE was prepared using phase-separated compression moulding, and its drug elution kinetics, antibacterial, mechanical, and wear properties were compared with those of conventional gentamicin-loaded bone cement.