The present study describes a novel technique for revitalising allogenic intrasynovial tendons by combining cell-based therapy and mechanical stimulation in an Specifically, canine flexor digitorum profundus tendons were used for this study and were divided into the following groups: (1) untreated, unprocessed normal tendon; (2) decellularised tendon; (3) bone marrow stromal cell (BMSC)-seeded tendon; and (4) BMSC-seeded and cyclically stretched tendon. Lateral slits were introduced on the tendon to facilitate cell seeding. Tendons from all four study groups were distracted by a servohydraulic testing machine. Tensile force and displacement data were continuously recorded at a sample rate of 20 Hz until 200 Newton of force was reached. Before testing, the cross-sectional dimensions of each tendon were measured with a digital caliper. Young’s modulus was calculated from the slope of the linear region of the stress-strain curve. The BMSCs were labeled for histological and cell viability evaluation on the decellularized tendon scaffold under a confocal microscope. Gene expression levels of selected extracellular matrix tendon growth factor genes were measured. Results were reported as mean ± SD and data was analyzed with one-way ANOVAs followed by Tukey’s post hoc multiple-comparison test.Objectives
Methods
Chronic osteomyelitis may recur if dead space management, after
excision of infected bone, is inadequate. This study describes the
results of a strategy for the management of deep bone infection
and evaluates a new antibiotic-loaded biocomposite in the eradication
of infection from bone defects. We report a prospective study of 100 patients with chronic osteomyelitis,
in 105 bones. Osteomyelitis followed injury or surgery in 81 patients.
Nine had concomitant septic arthritis. 80 patients had comorbidities
(Cierny-Mader (C-M) Class B hosts). Ten had infected nonunions. All patients were treated by a multidisciplinary team with a
single-stage protocol including debridement, multiple sampling,
culture-specific systemic antibiotics, stabilisation, dead space
filling with the biocomposite and primary skin closure. Aims
Patients and Methods
Calcium sulphate (CaSO4) is a resorbable material
that can be used simultaneously as filler of a dead space and as
a carrier for the local application of antibiotics. Our aim was
to describe the systemic exposure and the wound fluid concentrations
of vancomycin in patients treated with vancomycin-loaded CaSO4 as
an adjunct to the routine therapy of bone and joint infections. A total of 680 post-operative blood and 233 wound fluid samples
were available for analysis from 94 implantations performed in 87
patients for various infective indications. Up to 6 g of vancomycin
were used. Non-compartmental pharmacokinetic analysis was performed
on the data from 37 patients treated for an infection of the hip.Aims
Patients and Methods
Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression.Objectives
Methods
The aim of this study was to systematically review the literature on measurement of muscle strength in patients with femoroacetabular impingement (FAI) and other pathologies and to suggest guidelines to standardise protocols for future research in the field. The Cochrane and PubMed libraries were searched for any publications using the terms ‘hip’, ‘muscle’, ‘strength’, and ‘measurement’ in the ‘Title, Abstract, Keywords’ field. A further search was performed using the terms ‘femoroacetabular’ or ‘impingement’. The search was limited to recent literature only.Objectives
Methods
The aim of this prospective study was to evaluate the intermediate-term
outcomes after revision anatomical ankle ligament reconstruction
augmented with suture tape for a failed modified Broström procedure. A total of 30 patients with persistent instability of the ankle
after a Broström procedure underwent revision augmented with suture
tape. Of these, 24 patients who were followed up for more than two
years were included in the study. There were 13 men and 11 women.
Their mean age was 31.8 years (23 to 44). The mean follow-up was 38.5
months (24 to 56) The clinical outcome was assessed using the Foot
and Ankle Outcome Score (FAOS) and the Foot and Ankle Ability Measure
(FAAM) score. The stability of the ankle was assessed using stress
radiographs.Aims
Patients and Methods
The acetabular labrum is a soft-tissue structure
which lines the acetabular rim of the hip joint. Its role in hip
joint biomechanics and joint health has been of particular interest
over the past decade. In normal hip joint biomechanics, the labrum
is crucial in retaining a layer of pressurised intra-articular fluid
for joint lubrication and load support/distribution. Its seal around
the femoral head is further regarded as a contributing to hip stability through
its suction effect. The labrum itself is also important in increasing
contact area thereby reducing contact stress. Given the labrum’s
role in normal hip joint biomechanics, surgical techniques for managing
labral damage are continuously evolving as our understanding of
its anatomy and function continue to progress. The current paper
aims to review the anatomy and biomechanical function of the labrum
and how they are affected by differing surgical techniques. Take home message: The acetabular labrum plays a critical role
in hip function and maintaining and restoring its function during
surgical intervention remain an essential goal. Cite this article:
There is increasing global awareness of adverse
reactions to metal debris and elevated serum metal ion concentrations
following the use of second generation metal-on-metal total hip
arthroplasties. The high incidence of these complications can be
largely attributed to corrosion at the head-neck interface. Severe
corrosion of the taper is identified most commonly in association
with larger diameter femoral heads. However, there is emerging evidence
of varying levels of corrosion observed in retrieved components
with smaller diameter femoral heads. This same mechanism of galvanic
and mechanically-assisted crevice corrosion has been observed in
metal-on-polyethylene and ceramic components, suggesting an inherent
biomechanical problem with current designs of the head-neck interface. We provide a review of the fundamental questions and answers
clinicians and researchers must understand regarding corrosion of
the taper, and its relevance to current orthopaedic practice. Cite this article:
Microindentation has the potential to measure the stiffness of an individual patient’s bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness. A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded.Objectives
Methods
The aim of this study was to compare the outcome of revision
total knee arthroplasty (TKA) with and without proximalisation of
the tibial tubercle in patients with a failed primary TKA who have
pseudo patella baja. All revision TKAs, performed between January 2008 and November
2013 at a tertiary referral University Orthopaedic Department were
retrospectively reviewed. Pseudo patella baja was defined using
the modified Insall-Salvati and the Blackburne-Peel ratios. A proximalisation
of the tibial tubercle was performed in 13 patients with pseudo
patella baja who were matched with a control group of 13 patients
for gender, age, height, weight, body mass index, length of surgery
and Blackburne-Peel ratio. Outcome was assessed two years post-operatively
using the Knee Society Score (KSS).Aims
Patients and Methods
Advances in polyethylene (PE) in total hip arthroplasty
have led to interest and increased use of highly crosslinked PE
(HXLPE) in total knee arthroplasty (TKA). Biomechanical data suggest
improved wear characteristics for HXLPE inserts over conventional
PE in TKA. Short-term results from registry data and few clinical
trials are promising. Our aim is to present a review of the history
of HXLPEs, the use of HXLPE inserts in TKA, concerns regarding potential mechanical
complications, and a thorough review of the available biomechanical
and clinical data. Cite this article:
A fracture of the hip is the most common serious orthopaedic
injury, and surgical site infection (SSI) is one of the most significant
complications, resulting in increased mortality, prolonged hospital
stay and often the need for further surgery. Our aim was to determine
whether high dose dual antibiotic impregnated bone cement decreases the
rate of infection. A quasi-randomised study of 848 patients with an intracapsular
fracture of the hip was conducted in one large teaching hospital
on two sites. All were treated with a hemiarthroplasty. A total
of 448 patients received low dose single-antibiotic impregnated
cement (control group) and 400 patients received high dose dual-antibiotic impregnated
cement (intervention group). The primary outcome measure was deep
SSI at one year after surgery.Aims
Patients and Methods
Ceramic-on-ceramic (CoC) bearings in total hip arthroplasty (THA)
are commonly used, but concerns exist regarding ceramic fracture.
This study aims to report the risk of revision for fracture of modern
CoC bearings and identify factors that might influence this risk,
using data from the National Joint Registry (NJR) for England, Wales, Northern
Ireland and the Isle of Man. We analysed data on 223 362 bearings from 111 681 primary CoC
THAs and 182 linked revisions for bearing fracture recorded in the
NJR. We used implant codes to identify ceramic bearing composition
and generated Kaplan-Meier estimates for implant survivorship. Logistic
regression analyses were performed for implant size and patient specific
variables to determine any associated risks for revision.Aims
Patients and Methods
Fractures of the distal femur can be challenging to manage and
are on the increase in the elderly osteoporotic population. Management
with casting or bracing can unacceptably limit a patient’s ability
to bear weight, but historically, operative fixation has been associated
with a high rate of re-operation. In this study, we describe the outcomes
of fixation using modern implants within a strategy of early return
to function. All patients treated at our centre with lateral distal femoral
locking plates (LDFLP) between 2009 and 2014 were identified. Fracture
classification and operative information including weight-bearing
status, rates of union, re-operation, failure of implants and mortality
rate, were recorded.Aims
Patients and Methods
The aim of this study was to assess hypertrophy of the extra-articular
tendon of the long head of biceps (LHB) in patients with a rotator
cuff tear. The study involved 638 shoulders in 334 patients (175 men, 159
women, mean age 62.6 years; 25 to 81) with unilateral symptomatic
rotator cuff tears. The cross-sectional area (CSA) of the LHB tendon
in the bicipital groove was measured pre-operatively in both shoulders
using ultrasound. There were 154 asymptomatic rotator cuff tears
in the contralateral shoulder. Comparisons were made between those
with a symptomatic tear, an asymptomatic tear and those with no
rotator cuff tear. In the affected shoulders, the CSAs were compared
in relation to the location and size of the rotator cuff tear. Aims
Patients and Methods
Ultraviolet (UV) light-mediated photofunctionalisation is known to improve osseointegration of pure titanium (Ti). However, histological examination of titanium alloy (Ti6Al4V), which is frequently applied in orthopaedic and dental surgery, has not yet been performed. This study examined the osseointegration of photofunctionalised Ti6Al4V implants. Ti and Ti6Al4V implants were treated with UV light, and the chemical composition and contact angle on the surfaces were evaluated to confirm photofunctionalisation. The implants were inserted into femurs in rats, and the rats were killed two or four weeks after the surgery. For histomorphometric analysis, both the bone–implant contact (BIC) ratio and the bone volume (BV) ratio were calculated from histological analysis and microcomputed tomography data.Objectives
Methods
The use of large-diameter metal-on-metal (MoM)
components in total hip arthroplasty (THA) is associated with an increased
risk of early failure due to adverse local tissue reaction to metal
debris (ARMD) in response to the release of metal ions from the
bearing couple and/or head-neck taper corrosion. The aim of this
paper was to present a review of the incidence and natural history
of ARMD and the forms of treatment, with a focus on the need for
and extent of resection or debulking of the pseudotumour. An illustrative
case report is presented of a patient with an intra-pelvic pseudotumour
associated with a large diameter MoM THA, which was treated successfully
with revision of the bearing surface to a dual mobility couple and
retention of the well-fixed acetabular and femoral components. The
pseudotumour was left Cite this article:
Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical A total of 54 osteoporotic human cadaver thoracic and lumbar vertebrae were instrumented with pedicle screws (uncemented, solid cemented or fenestrated cemented) and augmented with high-viscosity PMMA cement (0 mL, 1 mL or 3 mL). The insertion torque and bone mineral density were determined. Radiographs and CT scans were undertaken to evaluate cement distribution and cement leakage. Pull-out testing was performed with a material testing machine to measure failure load and stiffness. The paired Objectives
Materials and Methods