The aim of this study was to investigate the structural integrity of torn and non-torn human acetabular labral tissue. A total of 47 human labral specimens were obtained from a biobank. These included 22 torn specimens and 25 control specimens from patients undergoing total hip arthroplasty with macroscopically normal labra. The specimens underwent dynamic shear analysis using a rheometer to measure storage modulus, as an indicator of structural integrity.Objectives
Methods
Radiostereometric analysis (RSA) studies of vitamin E-doped, highly crosslinked polyethylene (VEPE) liners show low head penetration rates in cementless acetabular components. There is, however, currently no data on cemented VEPE acetabular components in total hip arthroplasty (THA). The aim of this study was to evaluate the safety of a new cemented VEPE component, compared with a conventional polyethylene (PE) component regarding migration, head penetration, and clinical results. We enrolled 42 patients (21 male, 21 female) with osteoarthritis and a mean age of 67 years (Aims
Patients and Methods
1. Primary lumbar vertebral instability or "pseudo-spondylolisthesis" varies from about 3 millimetres to 1·7 centimetres, and is perhaps the commonest radiological sign associated with lumbo-sacral pain after the third decade of life. It was observed in 28·6 per cent of 500 consecutive cases of lumbo-sacral pain. The next commonest cause is gross disc degeneration, which is a late result of instability. 2. The secondary instability that may accompany a nuclear prolapse or osteoarthritis is excluded from this discussion. 3. This lumbar instability is an early sign of "incipient disc degeneration," occurring before narrowing of the disc space, sclerosis of the epiphysial rings, or osteophyte formation becomes evident. The instability in the lower lumbar region is caused by incomplete
Unstable fractures of the forearm in children present problems in management and in the indications for operative treatment. In children, unlike adults, the fractures nearly always unite, and up to 10° of angulation is usually considered to be acceptable. If surgical intervention is required the usual practice in the UK is to plate both bones as in an adult. We studied, retrospectively, 32 unstable fractures of the forearm in children treated by compression plating. Group A (20 children) had conventional plating of both forearm bones and group B (12 children) had plating of the ulna only. The mean age was 11 years in both groups and 23 (71%) of the fractures were in the midshaft. In group B an acceptable position of the radius was regarded as less than 10° of angulation in both anteroposterior (AP) and lateral planes, and with the bone ends hitched. This was achieved by closed means in all except two cases, which were therefore included in group A. Union was achieved in all patients, the mean time being 9.8 weeks in group A and 11.5 weeks in B. After a mean interval of at least 12 months, 14 children in group A and nine in group B had their fixation devices removed. We analysed the results after the initial operation in all 32 children. The 23 who had the plate removed were assessed at final review. The results were graded on the ability to undertake physical activities and an objective assessment of loss of rotation of the forearm. In group A, complications were noted in eight patients (40%) after fixation and in six (42%) in relation to removal of the
Loosening is a well-known complication in the fixation of fractures using devices such as locking plates or unilateral fixators. It is believed that high strains in the bone at the bone-screw interface can initiate loosening, which can result in infection, and further loosening. Here, we present a new theory of loosening of implants. The time-dependent response of bone subjected to loads results in interfacial deformations in the bone which accumulate with cyclical loading and thus accentuates loosening. We used an ‘ideal’ bone-screw system, in which the screw is subjected to cyclical lateral loads and trabecular bone is modelled as non-linear viscoelastic and non-linear viscoelastic-viscoplastic material, based on recent experiments, which we conducted.Aims
Methods
The aim of this study was to compare the clinical effectiveness of Kirschner wire (K-wire) fixation with locking-plate fixation for patients with a dorsally displaced fracture of the distal radius in the five years after injury. We report the five-year follow-up of a multicentre, two-arm, parallel-group randomized controlled trial. A total of 461 adults with a dorsally displaced fracture of the distal radius within 3 cm of the radiocarpal joint that required surgical fixation were recruited from 18 trauma centres in the United Kingdom. Patients were excluded if the surface of the wrist joint was so badly displaced it required open reduction. In all, 448 patients were randomized to receive either K-wire fixation or locking-plate fixation. In the K-wire group, there were 179 female and 38 male patients with a mean age of 59.1 years (19 to 89). In the locking-plate group, there were 194 female and 37 male patients with a mean age of 58.3 years (20 to 89). The primary outcome measure was the patient-rated wrist evaluation (PRWE). Secondary outcomes were health-related quality of life using the EuroQol five-dimension three-level (EQ-5D-3L) assessment, and further surgery related to the index fracture.Aims
Patients and Methods
1. The fibrillar networks of adult human articular cartilage, taken from femoral and acetabular specimens, have been systematically examined by scanning electron microscopy. The internal structures revealed by rupturing the tissue were compared with published findings from transmission electron microscope studies. 2. Though this technique demonstrated the internal fibrillar appearance of cartilage to a remarkable degree, it had several attendant limitations. On final drying, specimens generally exhibited shrinkage which varied within wide limits; this could have altered the internal architecture to some extent. In addition, the rupturing technique, which at the time of this investigation was the only satisfactory method of revealing the fibrillar cartilage structure, may well have had a great influence on the fibril orientations. 3. The fibrils revealed no characteristic collagen periodicity and were considerably thicker than those observed by transmission electron microscopy. It is suggested that a coating of mucin on the collagen fibrils might account for this. 4. At low magnifications the torn layers in the fractured surfaces extended
Asphericity of the femoral head-neck junction is common in cam-type
femoroacetabular impingement (FAI) and usually quantified using
the alpha angle on radiographs or MRI. The aim of this study was
to determine the natural alpha angle in a large cohort of patients
by continuous circumferential analysis with CT. CT scans of 1312 femurs of 656 patients were analyzed in this
cross-sectional study. There were 362 men and 294 women. Their mean
age was 61.2 years (18 to 93). All scans had been performed for
reasons other than hip disease. Digital circumferential analysis
allowed continuous determination of the alpha angle around the entire
head-neck junction. All statistical tests were conducted two-sided;
a p-value < 0.05 was considered statistically significant.Aims
Methods
The experiments were performed to answer three main questions. These and our answers may be summarised as follows. What is the precise mechanism of healing of a raw bony surface in a joint? What cells are involved? Where do they originate?âIn all the implant experiments and in the control series the fundamental mechanism of healing was similar. 1. A massive proliferation of fibroblasts occurred from the cut periosteum, from the cut joint capsule, and to a lesser extent from the medullary canal. 2. Fibroblasts grew centripetally in the first few weeks after operation, attempting to form a "fibroblast cap" to the cut bone end. 3. Fibroblasts of this cap near the cut bone spicules metamorphosed to become prechondroblasts, chondroblasts laying down cartilage matrix, and hypertrophied (alkaline phosphatase-secreting) chondrocytes lying in a calcified matrix. 4. This calcified cartilage matrix was invaded by dilated capillaries probably bearing osteoblasts which laid down perivascular (endochondral) bone. 5. Some of the cells of projecting bone spicules died and their matrix was eroded in the presence of many osteoclasts. 6. In the control experiments of simple excision of the radial head new bone was produced at the periphery only by processes (3) and (4). This sealed off the underlying peripheral cortical bone from the superficially placed peripheral articular surface of fibrocartilage. At about a year from operation the central portion of the articular surface was still formed of bare bone, or of bone spicules covered by a thin layer of irregularly arranged collagen fibres. The opposite capitular articular cartilage was badly eroded. Does the introduction of a dead cartilage implant over the raw bone end affect in any way the final constitution of the new articular surface?âIn the implant experiments the new bone produced by processes (3) and (4) formed, after about a year, a complete cortical plate which entirely sealed off the cut end of the radius and left a superficially placed articular covering of smooth fibrocartilage, closely resembling a normal joint surface. The opposite capitular articular surface was normal. What is the final fate of such an implant?âWhale cartilage implants underwent replacement by fibroblasts and collagen fibres, and took about nine months to disappear. The cartilage of fixed autotransplants and homotransplants underwent similar gradual replacement, and took about the same time in each case. The dead bone, implanted in association with the cartilage in both cases, acted as a nidus for hyaline cartilage production by chondrocytes derived from fibroblasts. This cartilage underwent endochondral ossification. This observation suggests that induction by non-cellular osseous material is a factor in chondrification and ossification. All the implants functioned as temporary articular menisci or in some cases as temporary
Cement thickness of at least 2 mm is generally associated with more favorable results for the femoral component in cemented hip arthroplasty. However, French-designed stems have shown favorable outcomes even with thin cement mantle. The biomechanical behaviors of a French stem, Charnley-Marcel-Kerboull (CMK) and cement were researched in this study. Six polished CMK stems were implanted into a composite femur, and one million times dynamic loading tests were performed. Stem subsidence and the compressive force at the bone-cement interface were measured. Tantalum ball (ball) migration in the cement was analyzed by micro CTObjective
Methods