We present a comparison of the results of the Oxford unicompartmental knee arthroplasty in patients younger and older than 60 years of age. The ten-year all-cause survival of the <
60 years of age group (52) was 91% (95% confidence interval (CI) 12), while in the ≥ 60 years of age group (512), the figure was 96% (95% CI 3). For the younger group, the mean Hospital for Special Surgery score at ten-year follow-up (n = 21) was 94 of 100, compared with a mean of 86 of 100 for the older group (n = 135). The results show that the Oxford unicompartmental arthroplasty can achieve ten-year results that are comparable to total knee arthroplasty in patients <
60 years of age. We conclude that for patients aged over 50, age should not be considered a contraindication for this procedure.
The tensile strength of the medial patellofemoral ligament (MPFL), and of surgical procedures which reconstitute it, are unknown. Ten fresh cadaver knees were prepared by isolating the patella, leaving only the MPFL as its attachment to the medial femoral condyle. The MPFL was either repaired by using a Kessler suture or reconstructed using either bone anchors or one of two tendon grafting techniques. The tensile strength and the displacement to peak force of the MPFL were then measured using an Instron materials-testing machine. The MPFL was found to have a mean tensile strength of 208 N (SD 90) at 26 mm (SD 7) of displacement. The strengths of the other techniques were: sutures alone, 37 N (SD 27); bone anchors plus sutures, 142 N (SD 39); blind-tunnel tendon graft, 126 N (SD 21); and through-tunnel tendon graft, 195 N (SD 66). The last was not significantly weaker than the MPFL itself.
This prospective study used magnetic resonance imaging to record sagittal plane tibiofemoral kinematics before and after anterior cruciate ligament reconstruction using autologous hamstring graft. Twenty patients with anterior cruciate ligament injuries, performed a closed-chain leg-press while relaxed and against a 150 N load. The tibiofemoral contact patterns between 0° to 90° of knee flexion were recorded by magnetic resonance scans. All measurements were performed pre-operatively and repeated at 12 weeks and two years. Following reconstruction there was a mean passive anterior laxity of 2.1 mm (
We performed a prospective, randomised controlled trial of unicompartmental knee arthroplasty comparing the performance of the Acrobot system with conventional surgery. A total of 27 patients (28 knees) awaiting unicompartmental knee arthroplasty were randomly allocated to have the operation performed conventionally or with the assistance of the Acrobot. The primary outcome measurement was the angle of tibiofemoral alignment in the coronal plane, measured by CT. Other secondary parameters were evaluated and are reported. All of the Acrobot group had tibiofemoral alignment in the coronal plane within 2° of the planned position, while only 40% of the conventional group achieved this level of accuracy. While the operations took longer, no adverse effects were noted, and there was a trend towards improvement in performance with increasing accuracy based on the Western Ontario and McMaster Universities Osteoarthritis Index and American Knee Society scores at six weeks and three months. The Acrobot device allows the surgeon to reproduce a pre-operative plan more reliably than is possible using conventional techniques which may have clinical advantages.
Abnormal sagittal kinematics after total knee replacement (TKR) can adversely affect functional outcome. Two important determinants of knee kinematics are component geometry and the presence or absence of a posterior-stabilising mechanism (cam-post). We investigated the influence of these variables by comparing the kinematics of a TKR with a polyradial femur with a single radius design, both with and without a cam-post mechanism. We assessed 55 patients, subdivided into four groups, who had undergone a TKR one year earlier by using an established fluoroscopy protocol in order to examine their kinematics
Autologous chondrocyte implantation (ACI) is used widely as a treatment for symptomatic chondral and osteochondral defects of the knee. Variations of the original periosteum-cover technique include the use of porcine-derived type I/type III collagen as a cover (ACI-C) and matrix-induced autologous chondrocyte implantation (MACI) using a collagen bilayer seeded with chondrocytes. We have performed a prospective, randomised comparison of ACI-C and MACI for the treatment of symptomatic chondral defects of the knee in 91 patients, of whom 44 received ACI-C and 47 MACI grafts. Both treatments resulted in improvement of the clinical score after one year. The mean modified Cincinnati knee score increased by 17.6 in the ACI-C group and 19.6 in the MACI group (p = 0.32). Arthroscopic assessments performed after one year showed a good to excellent International Cartilage Repair Society score in 79.2% of ACI-C and 66.6% of MACI grafts. Hyaline-like cartilage or hyaline-like cartilage with fibrocartilage was found in the biopsies of 43.9% of the ACI-C and 36.4% of the MACI grafts after one year. The rate of hypertrophy of the graft was 9% (4 of 44) in the ACI-C group and 6% (3 of 47) in the MACI group. The frequency of re-operation was 9% in each group. We conclude that the clinical, arthroscopic and histological outcomes are comparable for both ACI-C and MACI. While MACI is technically attractive, further long-term studies are required before the technique is widely adopted.