Aims. The purpose of this study was to compare the radiological outcomes of manual versus robotic-assisted medial unicompartmental knee arthroplasty (UKA). Methods. Postoperative radiological outcomes from 86 consecutive robotic-assisted UKAs (RAUKA group) from a single academic centre were retrospectively reviewed and compared to 253 manual UKAs (MUKA group) drawn from a prior study at our institution. Femoral coronal and sagittal angles (FCA, FSA), tibial coronal and sagittal angles (TCA, TSA), and implant overhang were radiologically measured to identify outliers. Results. When assessing the accuracy of RAUKAs, 91.6% of all alignment measurements and 99.2% of all overhang measurements were within the target range. All alignment and overhang targets were simultaneously met in 68.6% of RAUKAs. When comparing radiological outcomes between the RAUKA and MUKA groups, statistically significant differences were identified for combined outliers in FCA (2.3% vs 12.6%; p = 0.006), FSA (17.4% vs 50.2%; p < 0.001), TCA (5.8% vs 41.5%; p < 0.001), and TSA (8.1% vs 18.6%; p = 0.023), as well as anterior (0.0% vs 4.7%; p = 0.042), posterior (1.2% vs 13.4%; p = 0.001), and medial (1.2% vs 14.2%; p < 0.001) overhang outliers. Conclusion. Robotic system navigation decreases alignment and overhang outliers compared to manual UKA. Given the association between component placement
Aims. COVID-19 has compounded a growing waiting list problem, with over 4.5 million patients now waiting for planned elective care in the UK. Views of patients on waiting lists are rarely considered in prioritization. Our primary aim was to understand how to support patients on waiting lists by hearing their experiences, concerns, and expectations. The secondary aim was to capture objective change in disability and coping mechanisms. Methods. A minimum representative sample of 824 patients was required for quantitative analysis to provide a 3% margin of
Aims. Unicompartmental knee arthroplasty (UKA) is a bone-preserving treatment option for osteoarthritis localized to a single compartment in the knee. The success of the procedure is sensitive to patient selection and alignment
There is a high rate of mortality in elderly
patients who sustain a fracture of the hip. We aimed to determine
the rate of preventable mortality and
Aims. The aim of this study was to explore why some calcar screws are malpositioned when a proximal humeral fracture is treated by internal fixation with a locking plate, and to identify risk factors for this phenomenon. Some suggestions can be made of ways to avoid this
Aims. The aim of this study was to investigate whether including the stages of ulnar physeal closure in Sanders stage 7 aids in a more accurate assessment for brace weaning in patients with adolescent idiopathic scoliosis (AIS). Methods. This was a retrospective analysis of patients who were weaned from their brace and reviewed between June 2016 and December 2018. Patients who weaned from their brace at Risser stage ≥ 4, had static standing height and arm span for at least six months, and were ≥ two years post-menarche were included. Skeletal maturity at weaning was assessed using Sanders staging with stage 7 subclassified into 7a, in which all phalangeal physes are fused and only the distal radial physis is open, with narrowing of the medial physeal plate of the distal ulna, and 7b, in which fusion of > 50% of the medial growth plate of distal ulna exists, as well as the distal radius and ulna (DRU) classification, an established skeletal maturity index which assesses skeletal maturation using finer stages of the distal radial and ulnar physes, from open to complete fusion. The grade of maturity at the time of weaning and any progression of the curve were analyzed using Fisher’s exact test, with Cramer’s V, and Goodman and Kruskal’s tau. Results. We studied a total of 179 patients with AIS, of whom 149 (83.2%) were female. Their mean age was 14.8 years (SD 1.1) and the mean Cobb angle was 34.6° (SD 7.7°) at the time of weaning. The mean follow-up was 3.4 years (SD 1.8). At six months after weaning, the rates of progression of the curve for patients weaning at Sanders stage 7a and 7b were 11.4% and 0%, respectively for those with curves of < 40°. Similarly, the rates of progression of the curve for those being weaned at ulnar grade 7 and 8 using the DRU classification were 13.5% and 0%, respectively. The use of Sanders stages 6, 7a, 7b, and 8 for the assessment of maturity at the time of weaning were strongly and significantly associated (Cramer’s V 0.326; p = 0.016) with whether the curve progressed at six months after weaning. Weaning at Sanders stage 7 with subclassification allowed 10.6% reduction of
Aims. Morphological abnormalities are present in patients with developmental dysplasia of the hip (DDH). We studied and compared the pelvic anatomy and morphology between the affected hemipelvis with the unaffected side in patients with unilateral Crowe type IV DDH using 3D imaging and analysis. Methods. A total of 20 patients with unilateral Crowe-IV DDH were included in the study. The contralateral side was considered normal in all patients. A coordinate system based on the sacral base (SB) in a reconstructed pelvic model was established. The pelvic orientations (tilt, rotation, and obliquity) of the affected side were assessed by establishing a virtual anterior pelvic plane (APP). The bilateral coordinates of the anterior superior iliac spine (ASIS) and the centres of hip rotation were established, and parameters concerning size and volume were compared for both sides of the pelvis. Results. The ASIS on the dislocated side was located inferiorly and anteriorly compared to the healthy side (coordinates on the y-axis and z-axis; p = 0.001; p = 0.031). The centre of hip rotation on the dislocated side was located inferiorly and medially compared to the healthy side (coordinates on the x-axis and the y-axis; p < 0.001; p = 0.003). The affected hemipelvis tilted anteriorly in the sagittal plane (mean 8.05° (SD 3.57°)), anteriorly rotated in the transverse plane (mean 3.31° (SD 1.41°)), and tilted obliquely and caudally in the coronal plane (mean 2.04° (SD 0.81°)) relative to the healthy hemipelvis. The affected hemipelvis was significantly smaller in the length, width, height, and volume than the healthy counterpart. (p = 0.014; p = 0.009; p = 0.035; p = 0.002). Conclusion. Asymmetric abnormalities were identified on the affected hemipelvis in patients with the unilateral Crowe-IV DDH using 3D imaging techniques. Improved understanding of the morphological changes may influence the positioning of the acetabular component at THA. Acetabular component malpositioning
Drug therapy forms an integral part of the management
of many orthopaedic conditions. However, many medicines can produce
serious adverse reactions if prescribed inappropriately, either
alone or in combination with other drugs. Often these hazards are
not appreciated. In response to this, the European Union recently
issued legislation regarding safety measures which member states
must adopt to minimise the risk of
Introduction. Virtual fracture clinics (VFCs) are being increasingly used to offer safe and efficient orthopaedic review without the requirement for face-to-face contact. With the onset of the COVID-19 pandemic, we sought to develop an online referral pathway that would allow us to provide definitive orthopaedic management plans and reduce face-to-face contact at the fracture clinics. Methods. All patients presenting to the emergency department from 21March 2020 with a musculoskeletal injury or potential musculoskeletal infection deemed to require orthopaedic input were discussed using a secure messaging app. A definitive management plan was communicated by an on-call senior orthopaedic decision-maker. We analyzed the time to decision, if further information was needed, and the referral outcome. An analysis of the orthopaedic referrals for the same period in 2019 was also performed as a comparison. Results. During the study period, 295 patients with mean age of 7.93 years (standard
We describe the impact of a targeted performance
improvement programme and the associated performance improvement
interventions, on mortality rates,
Objectives. We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. Methods. We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. Results. The mean
We have investigated the
Aims. The aim of this study was to assess whether supine flexibility predicts the likelihood of curve progression in patients with adolescent idiopathic scoliosis (AIS) undergoing brace treatment. Methods. This was a retrospective analysis of patients with AIS prescribed with an underarm brace between September 2008 to April 2013 and followed up until 18 years of age or required surgery. Patients with structural proximal curves that preclude underarm bracing, those who were lost to follow-up, and those who had poor compliance to bracing (<16 hours a day) were excluded. The major curve Cobb angle, curve type, and location were measured on the pre-brace standing posteroanterior (PA) radiograph, supine whole spine radiograph, initial in-brace standing PA radiograph, and the post-brace weaning standing PA radiograph. Validation of the previous in-brace Cobb angle regression model was performed. The outcome of curve progression post-bracing was tested using a logistic regression model. The supine flexibility cut-off for curve progression was analyzed with receiver operating characteristic curve. Results. A total of 586 patients with mean age of 12.6 years (SD 1.2) remained for analysis after exclusion. The baseline Cobb angle was similar for thoracic major curves (31.6° (SD 3.8°)) and lumbar major curves (30.3° (SD 3.7°)). Curve progression was more common in the thoracic curves than lumbar curves with mean final Cobb angles of 40.5° (SD 12.5°) and 31.8° (SD 9.8°) respectively. This dataset matched the prediction model for in-brace Cobb angle with less mean absolute
Aims. A retrospective longitudinal study was conducted to compare directly volumetric wear of retrieved polyethylene inserts to predicted volumetric wear modelled from individual gait mechanics of total knee arthroplasty (TKA) patients. Methods. In total, 11 retrieved polyethylene tibial inserts were matched with gait analysis testing performed on those patients. Volumetric wear on the articular surfaces was measured using a laser coordinate measure machine and autonomous reconstruction. Knee kinematics and kinetics from individual gait trials drove computational models to calculate medial and lateral tibiofemoral contact paths and forces. Sliding distance along the contact path, normal forces and implantation time were used as inputs to Archard’s equation of wear to predict volumetric wear from gait mechanics. Measured and modelled wear were compared for each component. Results. Volumetric wear rates on eight non-delaminated components measured 15.9 mm. 3. /year (standard
Aims. Patient-specific glenoid guides (PSGs) claim an improvement in
accuracy and reproducibility of the positioning of components in
total shoulder arthroplasty (TSA). The results have not yet been
confirmed in a prospective clinical trial. Our aim was to assess
whether the use of PSGs in patients with osteoarthritis of the shoulder
would allow accurate and reliable implantation of the glenoid component. Patients and Methods. A total of 17 patients (three men and 14 women) with a mean age
of 71 years (53 to 81) awaiting TSA were enrolled in the study.
Pre- and post-operative version and inclination of the glenoid were
measured on CT scans, using 3D planning automatic software. During
surgery, a congruent 3D-printed PSG was applied onto the glenoid
surface, thus determining the entry point and orientation of the
central guide wire used for reaming the glenoid and the introduction
of the component. Manual segmentation was performed on post-operative
CT scans to compare the planned and the actual position of the entry
point (mm) and orientation of the component (°). Results. The mean
Excellent outcomes have been reported following CT-based robotic arm-assisted total hip arthroplasty (rTHA) compared with manual THA; however, its superiority over CT-based navigation THA (nTHA) remains unclear. This study aimed to determine whether a CT-based robotic arm-assisted system helps surgeons perform accurate cup placement, minimizes leg length, and offsets discrepancies more than a CT-based navigation system. We studied 60 hips from 54 patients who underwent rTHA between April 2021 and August 2023, and 45 hips from 44 patients who underwent nTHA between January 2020 and March 2021 with the same target cup orientation at the Department of Orthopedic Surgery at Ozu Memorial Hospital, Japan. After propensity score matching, each group had 37 hips. Postoperative acetabular component position and orientation were measured using the planning module of the CT-based navigation system. Postoperative leg length and offset discrepancies were evaluated using postoperative CT in patients who have unilateral hip osteoarthritis.Aims
Methods
This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images. The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm3). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis.Aims
Methods
An objective technological solution for tracking adherence to at-home shoulder physiotherapy is important for improving patient engagement and rehabilitation outcomes, but remains a significant challenge. The aim of this research was to evaluate performance of machine-learning (ML) methodologies for detecting and classifying inertial data collected during in-clinic and at-home shoulder physiotherapy exercise. A smartwatch was used to collect inertial data from 42 patients performing shoulder physiotherapy exercises for rotator cuff injuries in both in-clinic and at-home settings. A two-stage ML approach was used to detect out-of-distribution (OOD) data (to remove non-exercise data) and subsequently for classification of exercises. We evaluated the performance impact of grouping exercises by motion type, inclusion of non-exercise data for algorithm training, and a patient-specific approach to exercise classification. Algorithm performance was evaluated using both in-clinic and at-home data.Aims
Methods
Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds. A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).Aims
Methods