Advertisement for orthosearch.org.uk
Results 41 - 60 of 2101
Results per page:
Bone & Joint Open
Vol. 2, Issue 3 | Pages 191 - 197
1 Mar 2021
Kazarian GS Barrack RL Barrack TN Lawrie CM Nunley RM

Aims. The purpose of this study was to compare the radiological outcomes of manual versus robotic-assisted medial unicompartmental knee arthroplasty (UKA). Methods. Postoperative radiological outcomes from 86 consecutive robotic-assisted UKAs (RAUKA group) from a single academic centre were retrospectively reviewed and compared to 253 manual UKAs (MUKA group) drawn from a prior study at our institution. Femoral coronal and sagittal angles (FCA, FSA), tibial coronal and sagittal angles (TCA, TSA), and implant overhang were radiologically measured to identify outliers. Results. When assessing the accuracy of RAUKAs, 91.6% of all alignment measurements and 99.2% of all overhang measurements were within the target range. All alignment and overhang targets were simultaneously met in 68.6% of RAUKAs. When comparing radiological outcomes between the RAUKA and MUKA groups, statistically significant differences were identified for combined outliers in FCA (2.3% vs 12.6%; p = 0.006), FSA (17.4% vs 50.2%; p < 0.001), TCA (5.8% vs 41.5%; p < 0.001), and TSA (8.1% vs 18.6%; p = 0.023), as well as anterior (0.0% vs 4.7%; p = 0.042), posterior (1.2% vs 13.4%; p = 0.001), and medial (1.2% vs 14.2%; p < 0.001) overhang outliers. Conclusion. Robotic system navigation decreases alignment and overhang outliers compared to manual UKA. Given the association between component placement errors and revision in UKA, this strong significant improvement in accuracy may improve implant survival. Level of Evidence: III. Cite this article: Bone Jt Open 2021;2-3:191–197


Bone & Joint Open
Vol. 2, Issue 8 | Pages 583 - 593
2 Aug 2021
Kulkarni K Shah R Armaou M Leighton P Mangwani J Dias J

Aims. COVID-19 has compounded a growing waiting list problem, with over 4.5 million patients now waiting for planned elective care in the UK. Views of patients on waiting lists are rarely considered in prioritization. Our primary aim was to understand how to support patients on waiting lists by hearing their experiences, concerns, and expectations. The secondary aim was to capture objective change in disability and coping mechanisms. Methods. A minimum representative sample of 824 patients was required for quantitative analysis to provide a 3% margin of error. Sampling was stratified by body region (upper/lower limb, spine) and duration on the waiting list. Questionnaires were sent to a random sample of elective orthopaedic waiting list patients with their planned intervention paused due to COVID-19. Analyzed parameters included baseline health, change in physical/mental health status, challenges and coping strategies, preferences/concerns regarding treatment, and objective quality of life (EuroQol five-dimension questionnaire (EQ-5D), Generalized Anxiety Disorder 2-item scale (GAD-2)). Qualitative analysis was performed via the Normalization Process Theory. Results. A total of 888 patients responded. Better health, pain, and mood scores were reported by upper limb patients. The longest waiters reported better health but poorer mood and anxiety scores. Overall, 82% had tried self-help measures to ease symptoms; 94% wished to proceed with their intervention; and 21% were prepared to tolerate deferral. Qualitative analysis highlighted the overall patient mood to be represented by the terms ‘understandable’, ‘frustrated’, ‘pain’, ‘disappointed’, and ‘not happy/depressed’. COVID-19-mandated health and safety measures and technology solutions were felt to be implemented well. However, patients struggled with access to doctors and pain management, quality of life (physical and psychosocial) deterioration, and delay updates. Conclusion. This is the largest study to hear the views of this ‘hidden’ cohort. Our findings are widely relevant to ensure provision of better ongoing support and communication, mostly within the constraints of current resources. In response, we developed a reproducible local action plan to address highlighted issues. Cite this article: Bone Jt Open 2021;2(8):583–593


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1088 - 1095
1 Jun 2021
Banger M Doonan J Rowe P Jones B MacLean A Blyth MJB

Aims. Unicompartmental knee arthroplasty (UKA) is a bone-preserving treatment option for osteoarthritis localized to a single compartment in the knee. The success of the procedure is sensitive to patient selection and alignment errors. Robotic arm-assisted UKA provides technological assistance to intraoperative bony resection accuracy, which is thought to improve ligament balancing. This paper presents the five-year outcomes of a comparison between manual and robotically assisted UKAs. Methods. The trial design was a prospective, randomized, parallel, single-centre study comparing surgical alignment in patients undergoing UKA for the treatment of medial compartment osteoarthritis (ISRCTN77119437). Participants underwent surgery using either robotic arm-assisted surgery or conventional manual instrumentation. The primary outcome measure (surgical accuracy) has previously been reported, and, along with secondary outcomes, were collected at one-, two-, and five-year timepoints. Analysis of five-year results and longitudinal analysis for all timepoints was performed to compare the two groups. Results. Overall, 104 (80%) patients of the original 130 who received surgery were available at five years (55 robotic, 49 manual). Both procedures reported successful results over all outcomes. At five years, there were no statistical differences between the groups in any of the patient reported or clinical outcomes. There was a lower reintervention rate in the robotic arm-assisted group with 0% requiring further surgery compared with six (9%) of the manual group requiring additional surgical intervention (p < 0.001). Conclusion. This study has shown excellent clinical outcomes in both groups with no statistical or clinical differences in the patient-reported outcome measures. The notable difference was the lower reintervention rate at five years for roboticarm-assisted UKA when compared with a manual approach. Cite this article: Bone Joint J 2021;103-B(6):1088–1095


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1178 - 1184
1 Sep 2014
Tarrant SM Hardy BM Byth PL Brown TL Attia J Balogh ZJ

There is a high rate of mortality in elderly patients who sustain a fracture of the hip. We aimed to determine the rate of preventable mortality and errors during the management of these patients. A 12 month prospective study was performed on patients aged > 65 years who had sustained a fracture of the hip. This was conducted at a Level 1 Trauma Centre with no orthogeriatric service. A multidisciplinary review of the medical records by four specialists was performed to analyse errors of management and elements of preventable mortality. During 2011, there were 437 patients aged > 65 years admitted with a fracture of the hip (85 years (66 to 99)) and 20 died while in hospital (86.3 years (67 to 96)). A total of 152 errors were identified in the 80 individual reviews of the 20 deaths. A total of 99 errors (65%) were thought to have at least a moderate effect on death; 45 reviews considering death (57%) were thought to have potentially been preventable. Agreement between the panel of reviewers on the preventability of death was fair. A larger-scale assessment of preventable mortality in elderly patients who sustain a fracture of the hip is required. Multidisciplinary review panels could be considered as part of the quality assurance process in the management of these patients. Cite this article: Bone Joint J 2014;96-B:1178–84


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1629 - 1635
1 Dec 2020
Wang Q Sheng N Rui B Chen Y

Aims. The aim of this study was to explore why some calcar screws are malpositioned when a proximal humeral fracture is treated by internal fixation with a locking plate, and to identify risk factors for this phenomenon. Some suggestions can be made of ways to avoid this error. Methods. We retrospectively identified all proximal humeral fractures treated in our institution between October 2016 and October 2018 using the hospital information system. The patients’ medical and radiological data were collected, and we divided potential risk factors into two groups: preoperative factors and intraoperative factors. Preoperative factors included age, sex, height, weight, body mass index, proximal humeral bone mineral density, type of fracture, the condition of the medial hinge, and medial metaphyseal head extension. Intraoperative factors included the grade of surgeon, neck-shaft angle after reduction, humeral head height, restoration of medial support, and quality of reduction. Adjusted binary logistic regression and multivariate logistic regression models were used to identify pre- and intraoperative risk factors. Area under the curve (AUC) analysis was used to evaluate the discriminative ability of the multivariable model. Results. Data from 203 patients (63 males and 140 females) with a mean age of 62 years (22 to 89) were analyzed. In 49 fractures, the calcar screw was considered to be malpositioned; in 154 it was in the optimal position. The rate of malpositioning was therefore 24% (49/203). No preoperative risk factor was found for malpositioning of the calcar screws. Only the neck-shaft angle was found to be related to the risk of screw malpositioning in a multivariate model (with an AUC of 0.72). For the fractures in which the neck-shaft angle was reduced to between 130° and 150°, 91% (133/46) of calcar screws were in the optimal position. Conclusion. The neck-shaft angle is the key factor for the appropriate positioning of calcar screws when treating a proximal humeral fracture with a locking plate. We recommend reducing the angle to between 130° and 150°. Cite this article: Bone Joint J 2020;102-B(12):1629–1635


Aims. The aim of this study was to investigate whether including the stages of ulnar physeal closure in Sanders stage 7 aids in a more accurate assessment for brace weaning in patients with adolescent idiopathic scoliosis (AIS). Methods. This was a retrospective analysis of patients who were weaned from their brace and reviewed between June 2016 and December 2018. Patients who weaned from their brace at Risser stage ≥ 4, had static standing height and arm span for at least six months, and were ≥ two years post-menarche were included. Skeletal maturity at weaning was assessed using Sanders staging with stage 7 subclassified into 7a, in which all phalangeal physes are fused and only the distal radial physis is open, with narrowing of the medial physeal plate of the distal ulna, and 7b, in which fusion of > 50% of the medial growth plate of distal ulna exists, as well as the distal radius and ulna (DRU) classification, an established skeletal maturity index which assesses skeletal maturation using finer stages of the distal radial and ulnar physes, from open to complete fusion. The grade of maturity at the time of weaning and any progression of the curve were analyzed using Fisher’s exact test, with Cramer’s V, and Goodman and Kruskal’s tau. Results. We studied a total of 179 patients with AIS, of whom 149 (83.2%) were female. Their mean age was 14.8 years (SD 1.1) and the mean Cobb angle was 34.6° (SD 7.7°) at the time of weaning. The mean follow-up was 3.4 years (SD 1.8). At six months after weaning, the rates of progression of the curve for patients weaning at Sanders stage 7a and 7b were 11.4% and 0%, respectively for those with curves of < 40°. Similarly, the rates of progression of the curve for those being weaned at ulnar grade 7 and 8 using the DRU classification were 13.5% and 0%, respectively. The use of Sanders stages 6, 7a, 7b, and 8 for the assessment of maturity at the time of weaning were strongly and significantly associated (Cramer’s V 0.326; p = 0.016) with whether the curve progressed at six months after weaning. Weaning at Sanders stage 7 with subclassification allowed 10.6% reduction of error in predicting the progression of the curve. Conclusion. The use of Sanders stages 7a and 7b allows the accurate assessment of skeletal maturity for guiding brace weaning in patients with AIS. Weaning at Sanders stage 7b, or at ulnar grade 8 with the DRU classification, is more appropriate as the curve did not progress in any patient with a curve of < 40° immediately post-weaning. Thus, reaching full fusion in both distal radial and ulnar physes (as at Sanders stage 8) is not necessary and this allows weaning from a brace to be initiated about nine months earlier. Cite this article: Bone Joint J 2021;103-B(1):141–147


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1311 - 1318
3 Oct 2020
Huang Y Gao Y Li Y Ding L Liu J Qi X

Aims. Morphological abnormalities are present in patients with developmental dysplasia of the hip (DDH). We studied and compared the pelvic anatomy and morphology between the affected hemipelvis with the unaffected side in patients with unilateral Crowe type IV DDH using 3D imaging and analysis. Methods. A total of 20 patients with unilateral Crowe-IV DDH were included in the study. The contralateral side was considered normal in all patients. A coordinate system based on the sacral base (SB) in a reconstructed pelvic model was established. The pelvic orientations (tilt, rotation, and obliquity) of the affected side were assessed by establishing a virtual anterior pelvic plane (APP). The bilateral coordinates of the anterior superior iliac spine (ASIS) and the centres of hip rotation were established, and parameters concerning size and volume were compared for both sides of the pelvis. Results. The ASIS on the dislocated side was located inferiorly and anteriorly compared to the healthy side (coordinates on the y-axis and z-axis; p = 0.001; p = 0.031). The centre of hip rotation on the dislocated side was located inferiorly and medially compared to the healthy side (coordinates on the x-axis and the y-axis; p < 0.001; p = 0.003). The affected hemipelvis tilted anteriorly in the sagittal plane (mean 8.05° (SD 3.57°)), anteriorly rotated in the transverse plane (mean 3.31° (SD 1.41°)), and tilted obliquely and caudally in the coronal plane (mean 2.04° (SD 0.81°)) relative to the healthy hemipelvis. The affected hemipelvis was significantly smaller in the length, width, height, and volume than the healthy counterpart. (p = 0.014; p = 0.009; p = 0.035; p = 0.002). Conclusion. Asymmetric abnormalities were identified on the affected hemipelvis in patients with the unilateral Crowe-IV DDH using 3D imaging techniques. Improved understanding of the morphological changes may influence the positioning of the acetabular component at THA. Acetabular component malpositioning errors caused by anterior tilt of the affected hemi pelvis and the abnormal position of the affected side centre of rotation should be considered by orthopaedic surgeons when undertaking THA in patients with Crowe-IV DDH. Cite this article: Bone Joint J 2020;102-B(10):1311–1318


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 434 - 441
1 Apr 2015
Shabani F Farrier AJ Krishnaiyan R Hunt C Uzoigwe CE Venkatesan M

Drug therapy forms an integral part of the management of many orthopaedic conditions. However, many medicines can produce serious adverse reactions if prescribed inappropriately, either alone or in combination with other drugs. Often these hazards are not appreciated. In response to this, the European Union recently issued legislation regarding safety measures which member states must adopt to minimise the risk of errors of medication. . In March 2014 the Medicines and Healthcare products Regulatory Agency and NHS England released a Patient Safety Alert initiative focussed on errors of medication. There have been similar initiatives in the United States under the auspices of The National Coordinating Council for Medication Error and The Joint Commission on the Accreditation of Healthcare Organizations. These initiatives have highlighted the importance of informing and educating clinicians. Here, we discuss common drug interactions and contra-indications in orthopaedic practice. This is germane to safe and effective clinical care. Cite this article: Bone Joint J 2015;97-B:434–41


Introduction. Virtual fracture clinics (VFCs) are being increasingly used to offer safe and efficient orthopaedic review without the requirement for face-to-face contact. With the onset of the COVID-19 pandemic, we sought to develop an online referral pathway that would allow us to provide definitive orthopaedic management plans and reduce face-to-face contact at the fracture clinics. Methods. All patients presenting to the emergency department from 21March 2020 with a musculoskeletal injury or potential musculoskeletal infection deemed to require orthopaedic input were discussed using a secure messaging app. A definitive management plan was communicated by an on-call senior orthopaedic decision-maker. We analyzed the time to decision, if further information was needed, and the referral outcome. An analysis of the orthopaedic referrals for the same period in 2019 was also performed as a comparison. Results. During the study period, 295 patients with mean age of 7.93 years (standard error (SE) 0.24) were reviewed. Of these, 25 (9.8%) were admitted, 17 (5.8%) were advised to return for planned surgical intervention, 105 (35.6%) were referred to a face-to-face fracture clinic, 137 (46.4%) were discharged with no follow-up, and seven (2.4%) were referred to other services. The mean time to decision was 20.14 minutes (SE 1.73). There was a significant difference in the time to decision between patients referred to fracture clinic and patients discharged (mean 25.25 minutes (SE 3.18) vs mean 2.63 (SE 1.42); p < 0.005). There were a total of 295 referrals to the fracture clinic for the same period in 2019 with a further 44 emergency admissions. There was a statistically significant difference in the weekly referrals after being triaged by the VFC (mean 59 (SE 5.15) vs mean 21 (SE 2.17); p < 0.001). Conclusion. The use of an electronic referral pathway to deliver a point of care virtual fracture clinic allowed for efficient use of scarce resources and definitive management plan delivery in a safe manner. Cite this article: Bone Joint Open 2020;1-6:293–301


The Bone & Joint Journal
Vol. 96-B, Issue 8 | Pages 1090 - 1097
1 Aug 2014
Perkins ZB Maytham GD Koers L Bates P Brohi K Tai NRM

We describe the impact of a targeted performance improvement programme and the associated performance improvement interventions, on mortality rates, error rates and process of care for haemodynamically unstable patients with pelvic fractures. Clinical care and performance improvement data for 185 adult patients with exsanguinating pelvic trauma presenting to a United Kingdom Major Trauma Centre between January 2007 and January 2011 were analysed with univariate and multivariate regression and compared with National data. In total 62 patients (34%) died from their injuries and opportunities for improved care were identified in one third of deaths. Three major interventions were introduced during the study period in response to the findings. These were a massive haemorrhage protocol, a decision-making algorithm and employment of specialist pelvic orthopaedic surgeons. Interventions which improved performance were associated with an annual reduction in mortality (odds ratio 0.64 (95% confidence interval (CI) 0.44 to 0.93), p = 0.02), a reduction in error rates (p = 0.024) and significant improvements in the targeted processes of care. Exsanguinating patients with pelvic trauma are complex to manage and are associated with high mortality rates; implementation of a targeted performance improvement programme achieved sustained improvements in mortality, error rates and trauma care in this group of severely injured patients. Cite this article: Bone Joint J 2014;96-B:1090–7


Bone & Joint Research
Vol. 6, Issue 3 | Pages 137 - 143
1 Mar 2017
Cho HS Park YK Gupta S Yoon C Han I Kim H Choi H Hong J

Objectives. We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. Methods. We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. Results. The mean error of 164 resections in 82 femurs in the AR group was 1.71 mm (0 to 6). The mean error of 82 resections in 41 femurs in the conventional resection group was 2.64 mm (0 to 11) (p < 0.05, one-way analysis of variance). The probabilities of a surgeon obtaining a 10 mm surgical margin with a 3 mm tolerance were 90.2% in AR-assisted resections, and 70.7% in conventional resections. Conclusion. We demonstrated that the accuracy of tumour resection was satisfactory with the help of the AR navigation system, with the tumour shown as a virtual template. In addition, this concept made the navigation system simple and available without additional cost or time. Cite this article: H. S. Cho, Y. K. Park, S. Gupta, C. Yoon, I. Han, H-S. Kim, H. Choi, J. Hong. Augmented reality in bone tumour resection: An experimental study. Bone Joint Res 2017;6:137–143


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 520 - 526
1 Apr 2008
Yau WP Leung A Liu KG Yan CH Wong LS Chiu KY

We have investigated the errors in the identification of the transepicondylar axis and the anteroposterior axis between a minimally-invasive and a conventional approach in four fresh-frozen cadaver knees. The errors in aligning the femoral prosthesis were compared with the reference transepicondylar axis as established by CT. The error in the identification of the transepicondylar axis was significantly higher in the minimal approach (4.5° of internal rotation, . sd. 4) than in the conventional approach (3° of internal rotation, . sd. 4; p < 0.001). The errors in identifying the anteroposterior axis in the two approaches were 0° (. sd. 5) and 1.8° (. sd. 5) of internal rotation, respectively (p < 0.001)


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 254 - 260
1 Feb 2020
Cheung JPY Cheung PWH

Aims. The aim of this study was to assess whether supine flexibility predicts the likelihood of curve progression in patients with adolescent idiopathic scoliosis (AIS) undergoing brace treatment. Methods. This was a retrospective analysis of patients with AIS prescribed with an underarm brace between September 2008 to April 2013 and followed up until 18 years of age or required surgery. Patients with structural proximal curves that preclude underarm bracing, those who were lost to follow-up, and those who had poor compliance to bracing (<16 hours a day) were excluded. The major curve Cobb angle, curve type, and location were measured on the pre-brace standing posteroanterior (PA) radiograph, supine whole spine radiograph, initial in-brace standing PA radiograph, and the post-brace weaning standing PA radiograph. Validation of the previous in-brace Cobb angle regression model was performed. The outcome of curve progression post-bracing was tested using a logistic regression model. The supine flexibility cut-off for curve progression was analyzed with receiver operating characteristic curve. Results. A total of 586 patients with mean age of 12.6 years (SD 1.2) remained for analysis after exclusion. The baseline Cobb angle was similar for thoracic major curves (31.6° (SD 3.8°)) and lumbar major curves (30.3° (SD 3.7°)). Curve progression was more common in the thoracic curves than lumbar curves with mean final Cobb angles of 40.5° (SD 12.5°) and 31.8° (SD 9.8°) respectively. This dataset matched the prediction model for in-brace Cobb angle with less mean absolute error in thoracic curves (0.61) as compared to lumbar curves (1.04). Reduced age and Risser stage, thoracic curves, increased pre-brace Cobb angle, and reduced correction and flexibility rates predicted increased likelihood of curve progression. Flexibility rate of more than 28% has likelihood of preventing curve progression with bracing. Conclusion. Supine radiographs provide satisfactory prediction for in-brace correction and post-bracing curve magnitude. The flexibility of the curve is a guide to determine the likelihood for brace success. Cite this article: Bone Joint J 2020;102-B(2):254–260


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 129 - 137
1 Jun 2020
Knowlton CB Lundberg HJ Wimmer MA Jacobs JJ

Aims. A retrospective longitudinal study was conducted to compare directly volumetric wear of retrieved polyethylene inserts to predicted volumetric wear modelled from individual gait mechanics of total knee arthroplasty (TKA) patients. Methods. In total, 11 retrieved polyethylene tibial inserts were matched with gait analysis testing performed on those patients. Volumetric wear on the articular surfaces was measured using a laser coordinate measure machine and autonomous reconstruction. Knee kinematics and kinetics from individual gait trials drove computational models to calculate medial and lateral tibiofemoral contact paths and forces. Sliding distance along the contact path, normal forces and implantation time were used as inputs to Archard’s equation of wear to predict volumetric wear from gait mechanics. Measured and modelled wear were compared for each component. Results. Volumetric wear rates on eight non-delaminated components measured 15.9 mm. 3. /year (standard error (SE) ± 7.7) on the total part, 11.4 mm. 3. /year (SE ± 6.4) on the medial side and 4.4 (SE ± 2.6) mm. 3. /year on the lateral side. Volumetric wear rates modelled from patient gait mechanics predicted 16.4 mm. 3. /year (SE 2.4) on the total part, 11.7 mm. 3. /year (SE 2.1) on the medial side and 4.7 mm. 3. /year (SE 0.4) on the lateral side. Measured and modelled wear volumes correlated significantly on the total part (p = 0.017) and the medial side (p = 0.012) but not on the lateral side (p = 0.154). Conclusion. In the absence of delamination, patient-specific knee mechanics during gait directly affect wear of the tibial component in TKA. Cite this article: Bone Joint J 2020;102-B(6 Supple A):129–137


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1080 - 1085
1 Aug 2016
Gauci MO Boileau P Baba M Chaoui J Walch G

Aims. Patient-specific glenoid guides (PSGs) claim an improvement in accuracy and reproducibility of the positioning of components in total shoulder arthroplasty (TSA). The results have not yet been confirmed in a prospective clinical trial. Our aim was to assess whether the use of PSGs in patients with osteoarthritis of the shoulder would allow accurate and reliable implantation of the glenoid component. Patients and Methods. A total of 17 patients (three men and 14 women) with a mean age of 71 years (53 to 81) awaiting TSA were enrolled in the study. Pre- and post-operative version and inclination of the glenoid were measured on CT scans, using 3D planning automatic software. During surgery, a congruent 3D-printed PSG was applied onto the glenoid surface, thus determining the entry point and orientation of the central guide wire used for reaming the glenoid and the introduction of the component. Manual segmentation was performed on post-operative CT scans to compare the planned and the actual position of the entry point (mm) and orientation of the component (°). Results. The mean error in the accuracy of the entry point was -0.1 mm (standard deviation (. sd. ) 1.4) in the horizontal plane, and 0.8 mm (. sd. 1.3) in the vertical plane. The mean error in the orientation of the glenoid component was 3.4° (. sd. 5.1°) for version and 1.8° (. sd. 5.3°) for inclination. Conclusion. Pre-operative planning with automatic software and the use of PSGs provides accurate and reproducible positioning and orientation of the glenoid component in anatomical TSA. Cite this article: Bone Joint J 2016;98-B:1080–5


Bone & Joint Open
Vol. 6, Issue 1 | Pages 3 - 11
1 Jan 2025
Shimizu A Murakami S Tamai T Haga Y Kutsuna T Kinoshita T Takao M

Aims

Excellent outcomes have been reported following CT-based robotic arm-assisted total hip arthroplasty (rTHA) compared with manual THA; however, its superiority over CT-based navigation THA (nTHA) remains unclear. This study aimed to determine whether a CT-based robotic arm-assisted system helps surgeons perform accurate cup placement, minimizes leg length, and offsets discrepancies more than a CT-based navigation system.

Methods

We studied 60 hips from 54 patients who underwent rTHA between April 2021 and August 2023, and 45 hips from 44 patients who underwent nTHA between January 2020 and March 2021 with the same target cup orientation at the Department of Orthopedic Surgery at Ozu Memorial Hospital, Japan. After propensity score matching, each group had 37 hips. Postoperative acetabular component position and orientation were measured using the planning module of the CT-based navigation system. Postoperative leg length and offset discrepancies were evaluated using postoperative CT in patients who have unilateral hip osteoarthritis.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims

This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images.

Methods

The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm3). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 165 - 177
1 Mar 2023
Boyer P Burns D Whyne C

Aims

An objective technological solution for tracking adherence to at-home shoulder physiotherapy is important for improving patient engagement and rehabilitation outcomes, but remains a significant challenge. The aim of this research was to evaluate performance of machine-learning (ML) methodologies for detecting and classifying inertial data collected during in-clinic and at-home shoulder physiotherapy exercise.

Methods

A smartwatch was used to collect inertial data from 42 patients performing shoulder physiotherapy exercises for rotator cuff injuries in both in-clinic and at-home settings. A two-stage ML approach was used to detect out-of-distribution (OOD) data (to remove non-exercise data) and subsequently for classification of exercises. We evaluated the performance impact of grouping exercises by motion type, inclusion of non-exercise data for algorithm training, and a patient-specific approach to exercise classification. Algorithm performance was evaluated using both in-clinic and at-home data.


Bone & Joint Open
Vol. 4, Issue 4 | Pages 250 - 261
7 Apr 2023
Sharma VJ Adegoke JA Afara IO Stok K Poon E Gordon CL Wood BR Raman J

Aims

Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds.

Methods

A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).


Bone & Joint 360
Vol. 12, Issue 4 | Pages 6 - 9
1 Aug 2023
Craxford S Marson BA Ollivere B