The role of computer-assisted surgery in maintaining the level of the joint in primary knee joint replacement (TKR) has not been well defined. We undertook a blinded randomised controlled trial comparing joint-line maintenance, functional outcomes, and quality-of-life outcomes between patients undergoing computer-assisted and conventional TKR. A total of 115 patients were randomised (computer-assisted, n = 55; conventional, n = 60). Two years post-operatively no significant correlation was found between computer-assisted and conventional surgery in terms of maintaining the joint line. Those TKRs where the joint line was depressed post-operatively improved the least in terms of functional scores. No difference was detected in terms of quality-of-life outcomes. Change in joint line was found to be related to change in alignment. Change in alignment significantly affects change in joint line and functional scores.
The objective of this study was to compare the early migration
characteristics and functional outcome of the Triathlon cemented
knee prosthesis with its predecessor, the Duracon cemented knee
prosthesis (both Stryker). A total 60 patients were prospectively randomised and tibial
component migration was measured by radiostereometric analysis (RSA)
at three months, one year and two years; clinical outcome was measured
by the American Knee Society score and the Knee Osteoarthritis and
Injury Outcome Score.Objectives
Methods
We identified 148 patients who had undergone a revision total knee replacement using a single implant system between 1990 and 2000. Of these 18 patients had died, six had developed a peri-prosthetic fracture and ten had incomplete records or radiographs. This left 114 with prospectively-collected radiographs and Bristol knee scores available for study. The height of the joint line before and after revision total knee replacement was measured and classified as either restored to within 5 mm of the pre-operative height or elevated if it was positioned more than 5 mm above the pre-operative height. The joint line was elevated in 41 knees (36%) and restored in 73 (64%). Revision surgery significantly improved the mean Bristol knee score from 41.1 ( Our findings show that restoration of the joint line at revision total knee replacement gives a significantly better result than leaving it unrestored by more than 5 mm. We recommend the greater use of distal femoral augments to help to achieve this goal.
The management of patients with a painful total knee replacement requires careful assessment and a stepwise approach in order to diagnose the underlying pathology accurately. The management should include a multidisciplinary approach to the patient’s pain as well as addressing the underlying aetiology. Pain should be treated with appropriate analgesia, according to the analgesic ladder of the World Health Organisation. Special measures should be taken to identify and to treat any neuropathic pain. There are a number of intrinsic and extrinsic causes of a painful knee replacement which should be identified and treated early. Patients with unexplained pain and without any recognised pathology should be treated conservatively since they may improve over a period of time and rarely do so after a revision operation.
Mobile-bearing posterior-stabilised knee replacements have been developed as an alternative to the standard fixed- and mobile-bearing designs. However, little is known about the We conclude that mobile-bearing posterior-stabilised knee replacements reproduce internal rotation of the tibia more closely during flexion than fixed-bearing posterior-stabilised designs. Furthermore, mobile-bearing posterior-stabilised knee replacements demonstrate a unidirectional movement which occurs at the upper and lower sides of the mobile insert. The femur moves in an anteroposterior direction on the upper surface of the insert, whereas the movement at the lower surface is pure rotation. Such unidirectional movement may lead to less wear when compared with the multidirectional movement seen in fixed-bearing posterior-stabilised knee replacements, and should be associated with more evenly applied cam-post stresses.
Abnormal sagittal kinematics after total knee replacement (TKR) can adversely affect functional outcome. Two important determinants of knee kinematics are component geometry and the presence or absence of a posterior-stabilising mechanism (cam-post). We investigated the influence of these variables by comparing the kinematics of a TKR with a polyradial femur with a single radius design, both with and without a cam-post mechanism. We assessed 55 patients, subdivided into four groups, who had undergone a TKR one year earlier by using an established fluoroscopy protocol in order to examine their kinematics